|
|
|
|
LEADER |
01690cam a22004697a 4500 |
001 |
BIBLO-16174 |
003 |
AR-BaUEN |
005 |
20240918104815.0 |
008 |
000125s1978 nyu||||f |||| 00| 0|spa|d |
040 |
|
|
|a AR-BaUEN
|b spa
|c AR-BaUEN
|
020 |
|
|
|a 0387903283
|
044 |
|
|
|a xxu
|
080 |
|
|
|a 517.53
|
100 |
1 |
|
|a Conway, John B.
|
245 |
1 |
0 |
|a Functions of one complex variable
|
250 |
|
|
|a 2nd. ed.
|
260 |
|
|
|a New York, NY :
|b Springer,
|c 1978
|
300 |
|
|
|a 316 p.
|
490 |
0 |
|
|a Graduate texts in mathematics ;
|v 11
|
500 |
|
|
|a Consultar el "Mathematical Subject Classification (2000)",para los descriptores
|
505 |
0 |
0 |
|t Preface
|
505 |
0 |
0 |
|g I.
|t The Complex Number System
|
505 |
0 |
0 |
|g II.
|t Metric Spaces and the Topology of C
|
505 |
0 |
0 |
|g III.
|t Elementary Properties and Examples of Analytic Functions
|
505 |
0 |
0 |
|g IV.
|t Complex Integration
|
505 |
0 |
0 |
|g V.
|t Singularities
|
505 |
0 |
0 |
|g VI.
|t The Maximum Modulus Theorem
|
505 |
0 |
0 |
|g VII.
|t Compactness and Convergence in the Space of Analytic Functions
|
505 |
0 |
0 |
|g VIII.
|t Runge's Theorem
|
505 |
0 |
0 |
|g IX.
|t Analytic Continuation and Reinmann Surfaces
|
505 |
0 |
0 |
|g X.
|t Harmonic Functions
|
505 |
0 |
0 |
|g XI.
|t Entire Functions
|
505 |
0 |
0 |
|g XII.
|t The Range of an Analytic Function
|
505 |
0 |
0 |
|g Appendix A:
|t Calculus for Complex Valued Functions on an Interval
|
505 |
0 |
0 |
|g Appendix B:
|t Suggestions for Further Study and Bibliographical Notes
|
505 |
0 |
0 |
|t References
|
505 |
0 |
0 |
|t Index
|
505 |
0 |
0 |
|t List of Symbols
|
653 |
1 |
0 |
|a 30-01
|
653 |
1 |
0 |
|a FUNCIONES
|
653 |
1 |
0 |
|a UNA VARIABLE COMPLEJA
|
962 |
|
|
|a info:eu-repo/semantics/book
|a info:ar-repo/semantics/libro
|b info:eu-repo/semantics/publishedVersion
|