On the topology and future stability of the universe /

Guardado en:
Detalles Bibliográficos
Autor principal: Ringström, Hans
Formato: Libro
Lenguaje:Inglés
Publicado: Oxford : Oxford University Press, c2013
Edición:1st. ed.
Colección:Oxford mathematical monographs
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03740nam a22008897a 4500
003 AR-BaUEN
005 20220331115449.0
008 220330s2013 xxkd|||f |||| 001 0 eng d
020 |a 9780199680290 
040 |a AR-BaUEN  |b spa  |c AR-BaUEN 
044 |a xxk 
080 |a 515.1:517.955  |b R582 
100 1 |a Ringström, Hans 
245 1 0 |a On the topology and future stability of the universe /   |c Hans Ringström 
250 |a 1st. ed. 
260 |a Oxford :   |b Oxford University Press,   |c c2013 
300 |a xiv, 718 p. :   |b il., gráfs. 
490 0 |a Oxford mathematical monographs 
504 |a Referencias bibliográficas pp. 707-713. 
504 |a Índice analítico de materias. 
505 0 0 |t Part I: Prologue 
505 0 0 |g 1  |t Introduction 
505 0 0 |g 2  |t The Cauchy problem in general relativity 
505 0 0 |g 3  |t The topology of the universe 
505 0 0 |g 4  |t Notions of proximity to spatial homogeneity and isotropy 
505 0 0 |g 5  |t Observational support for the standard model 
505 0 0 |g 6  |t Concluding remarks 
505 0 0 |t Part II: Introductory material 
505 0 0 |g 7  |t Main results 
505 0 0 |g 8  |t Outline, general theory of the Einstein-Vlasov system 
505 0 0 |g 9  |t Outline, main results 
505 0 0 |g 10  |t References to the literature and outlook 
505 0 0 |t Part III: background and basic constructions 
505 0 0 |g 11  |t Basic analysis estimates 
505 0 0 |g 12  |t Linear algebra 
505 0 0 |g 13  |t Coordinates 
505 0 0 |t Part IV: function spaces, estimates 
505 0 0 |g 14  |t Function spaces for distribution functions I: local theory 
505 0 0 |g 15  |t Function spaces for distribution functions II: the manifold setting 
505 0 0 |g 16  |t Main weighted estimate 
505 0 0 |g 17  |t Concepts of convergence 
505 0 0 |t Part V: local theory 
505 0 0 |g 18  |t Uniqueness 
505 0 0 |g 19  |t Local existence 
505 0 0 |g 20  |t Stability 
505 0 0 |t Part VI: the Cauchy problem in general relativity 
505 0 0 |g 21  |t The Vlasov equation 
505 0 0 |g 22  |t The initial value problem 
505 0 0 |g 23  |t Existence of a maximal globally hyperbolic development 
505 0 0 |g 24  |t Cauchy stability 
505 0 0 |t Part VII: spatial homogeneity 
505 0 0 |g 25  |t Spatially homogeneous metrics, symmetry reductions 
505 0 0 |g 26  |t Criteria ensuring global existence 
505 0 0 |g 27  |t A potential with a positive non-degenerate local minimum 
505 0 0 |g 28  |t Approximating perfect fluids with matter of Vlasov type 
505 0 0 |t Part VIII: future global nonlinear stability 
505 0 0 |g 29  |t Background material 
505 0 0 |g 30  |t Estimating the Vlasov contribution to the stress energy tensor 
505 0 0 |g 31  |t Global existence 
505 0 0 |g 32  |t Asymptotics 
505 0 0 |g 33  |t Proof of the stability results 
505 0 0 |g 34  |t Models, fitting the observations, with arbitrary closed spatial topology 
505 0 0 |t Part IX: appendices 
505 0 0 |g A  |t A: Examples of pathological behaviour of solutions to nonlinear wave equations 
505 0 0 |g B  |t B: Quotients and universal covering spaces 
505 0 0 |g C  |t C: Spatially homogeneous and isotropic metrics 
505 0 0 |g D  |t D: Auxiliary computations in low regularity 
505 0 0 |g E  |t E: The curvature of left invariant metrics 
505 0 0 |g F  |t F: Comments concerning the Einstein-Boltzmann system 
650 1 7 |2 spines  |a TOPOLOGIA 
650 1 7 |2 spines  |a MODELOS COSMOLOGICOS 
650 1 7 |2 tesamat  |a ESTABILIDAD, TEORIA DE (MATEMATICAS) 
650 1 7 |2 tesamat  |a CAUCHY, PROBLEMA DE 
650 1 7 |2 spines  |a TEORIA DE LA RELATIVIDAD 
653 1 0 |a ECUACIONES DE EINSTEIN-VLASOV 
962 |a info:ar-repo/semantics/libro  |a info:eu-repo/semantics/book  |b info:eu-repo/semantics/publishedVersion 
999 |c 90016