An introduction to statistical learning : with applications in Python /

"An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty yea...

Descripción completa

Detalles Bibliográficos
Otros Autores: James, Gareth (Gareth Michael), Witten, Daniela, Hastie, Trevor, Tibshirani, Robert, Taylor, Jonathan
Formato: Libro
Lenguaje:Inglés
Publicado: Cham, Switzerland : Springer, c2023.
Colección:Springer texts in statistics
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03521cam a2200445 a 4500
001 99963132904151
005 20241030105355.0
008 230817s2023 sz a b 001 0 eng d
020 |a 9783031387463  |q (hardback) 
020 |a 3031387465  |q (hardback) 
020 |a 9783031387470  |q (electronic book) 
020 |a 3031387473  |q (electronic book) 
035 |a (OCoLC)1393996196 
035 |a (OCoLC)on1393996196 
040 |a LWU  |c LWU  |d YDX  |d SFU  |d NTU  |d OCLCO  |d U@S 
049 |a U@SA 
050 4 |a QA276  |b .I677 2023 
082 0 4 |a 519.5  |2 23 
245 0 3 |a An introduction to statistical learning :  |b with applications in Python /  |c Gareth James ... [et al.] 
260 |a Cham, Switzerland :  |b Springer,  |c c2023. 
300 |a xv, 607 p. :  |b il. ;  |c 27 cm. 
490 1 |a Springer texts in statistics 
500 |a Autores: Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Jonathan Taylor. 
504 |a Incluye referencias bibliográficas e índice. 
505 0 |a Introduction -- Statistical learning -- Linear regression -- Classification -- Resampling methods -- Linear model selection and regularization -- Moving beyond linearity -- Tree-based methods -- Support vector machines -- Deep learning -- Survival analysis and censored data -- Unsupervised learning -- Multiple testing. 
520 |a "An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users." --Descripción del editor. 
650 0 |a Mathematical statistics. 
650 0 |a Mathematical models. 
650 0 |a Python (Computer program language) 
650 0 |a Statistics. 
650 7 |a Estadística matemática.  |2 UDESA 
650 7 |a Modelos matemáticos.  |2 UDESA 
650 7 |a Python (Lenguaje de programación (Computadoras))  |2 UDESA 
650 7 |a Estadística.  |2 UDESA 
700 1 |a James, Gareth  |q (Gareth Michael) 
700 1 |a Witten, Daniela. 
700 1 |a Hastie, Trevor. 
700 1 |a Tibshirani, Robert. 
700 1 |a Taylor, Jonathan. 
830 0 |a Springer texts in statistics