Neural networks for pattern recognition /

"This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer per...

Descripción completa

Detalles Bibliográficos
Autor principal: Bishop, Christopher M.
Formato: Libro
Lenguaje:Inglés
Publicado: Oxford : New York : Clarendon Press ; Oxford University Press, 1995.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02324cam a2200325 a 4500
001 99931132304151
005 20241030105347.0
008 950822s1995 enka b 001 0 eng
010 |a  95040465  
020 |a 0198538499  |q (hbk.) 
020 |a 9780198538493  |q (hbk.) 
020 |a 0198538642  |q (pbk.) 
020 |a 9780198538646  |q (pbk.) 
035 |a (OCoLC)33101074 
035 |a (OCoLC)ocm33101074  
040 |a DLC  |c DLC  |d UKM  |d OCLCO  |d U@S 
049 |a U@SA 
050 0 0 |a QA76.87  |b .B574 1995 
080 |a 519.687 
100 1 |a Bishop, Christopher M. 
245 1 0 |a Neural networks for pattern recognition /  |c Christopher M. Bishop. 
260 |a Oxford :  |b Clarendon Press ;  |a New York :  |b Oxford University Press,  |c 1995. 
300 |a xvii, 482 p. :  |b il. ;  |c 24 cm. 
504 |a Incluye referencias bibliográficas (p. 457-475) e índice. 
505 0 |a Foreword / Geoffrey Hinton -- Preface -- 1. Statistical Pattern Recognition -- 2. Probability Density Estimation -- 3. Single-Layer Networks -- 4. The Multi-layer Perceptron -- 5. Radial Basis Functions -- 6. Error Functions -- 7. Parameter Optimization Algorithms -- 8. Pre-processing and Feature Extraction -- 9. Learning and Generalization -- 10. Bayesian Techniques -- A. Symmetric Matrices -- B. Gaussian Integrals -- C. Lagrange Multipliers -- D. Calculus of Variations -- E. Principal Components. 
520 |a "This is the first comprehensive treatment of feed-forward neural networks from the perspective of statistical pattern recognition. After introducing the basic concepts, the book examines techniques for modelling probability density functions and the properties and merits of the multi-layer perceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100 exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition." --Descripción del editor. 
650 0 |a Neural networks (Computer science) 
650 0 |a Pattern recognition systems. 
650 7 |a Redes neuronales (Computación)  |2 UDESA 
650 7 |a Sistemas de reconocimiento de patrones.  |2 UDESA