Linear algebra and learning from data /

This is a textbook to help readers understand the steps that lead to deep learning. Linear algebra comes first especially singular values, least squares, and matrix factorizations. Often the goal is a low rank approximation A = CR (column-row) to a large matrix of data to see its most important part...

Descripción completa

Detalles Bibliográficos
Autor principal: Strang, Gilbert
Formato: Libro
Lenguaje:Inglés
Publicado: Wellesley, MA : Wellesley-Cambridge Press, c2019.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02635cam a2200313Ia 4500
001 99919133504151
005 20241030105345.0
008 190114s2019 maua b 001 0 eng d
020 |a 0692196382  |q (hardback) 
020 |a 9780692196380  |q (hardback) 
035 |a (OCoLC)1081372892 
035 |a (OCoLC)on1081372892 
040 |a YDX  |c YDX  |d SEA  |d DKU  |d U@S 
049 |a U@SA 
050 4 |a QA184.2  |b .S77 2019 
080 |a 512.64 
100 1 |a Strang, Gilbert. 
245 1 0 |a Linear algebra and learning from data /  |c Gilbert Strang. 
260 |a Wellesley, MA :  |b Wellesley-Cambridge Press,  |c c2019. 
300 |a xiii, 432 p. :  |b il. ;  |c 25 cm. 
504 |a Incluye referencias bibliográficas e índices. 
505 0 |a Deep learning and neural nets -- Preface and acknowledgements -- Part I: Highlights of linear algebra -- Part II: Computations with large matrices -- Part III: Low rank and compressed sensing -- Part IV: Special matrices -- Part V: Probability and statistics -- Part IV: Optimization -- Part VII: Learning from data -- Books on machine learning -- Eigenvalues and singular values : rank one -- Codes and algorithms for numerical linear algebra -- Counting parameters in the basic factorizations. 
520 |a This is a textbook to help readers understand the steps that lead to deep learning. Linear algebra comes first especially singular values, least squares, and matrix factorizations. Often the goal is a low rank approximation A = CR (column-row) to a large matrix of data to see its most important part. This uses the full array of applied linear algebra, including randomization for very large matrices. Then deep learning creates a large-scale optimization problem for the weights solved by gradient descent or better stochastic gradient descent. Finally, the book develops the architectures of fully connected neural nets and of Convolutional Neural Nets (CNNs) to find patterns in data. Audience: This book is for anyone who wants to learn how data is reduced and interpreted by and understand matrix methods. Based on the second linear algebra course taught by Professor Strang, whose lectures on the training data are widely known, it starts from scratch (the four fundamental subspaces) and is fully accessible without the first text. -- Descripción del editor. 
650 0 |a Algebras, Linear  |v Textbooks. 
650 0 |a Mathematical optimization  |v Textbooks. 
650 0 |a Mathematical statistics  |v Textbooks. 
650 7 |a Álgebras lineales  |v Libros de texto.  |2 UDESA 
650 7 |a Optimización matemática  |v Libros de texto.  |2 UDESA 
650 7 |a Estadística matemática  |v Libros de texto.  |2 UDESA