Deep learning /

"Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge...

Descripción completa

Detalles Bibliográficos
Autor principal: Goodfellow, Ian
Otros Autores: Bengio, Yoshua, Courville, Aaron
Formato: Libro
Lenguaje:Inglés
Publicado: Cambridge, Massachusetts : MIT Press, c2016.
Colección:Adaptive computation and machine learning
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03471cam a2200373 a 4500
001 990000685600204151
005 20241030105204.0
008 160613s2016 maua b 001 0 eng
010 |a  2016022992 
019 |a 951226949  |a 1009034043 
020 |a 9780262035613  |q (hardcover ;  |q alkaline paper) 
020 |a 0262035618  |q (hardcover ;  |q alkaline paper) 
035 |a (OCoLC)000068560 
035 |a (udesa)000068560USA01 
035 |a (OCoLC)955778308  |z (OCoLC)951226949  |z (OCoLC)1009034043 
035 |a (OCoLC)990000685600204151 
040 |a DLC  |c DLC  |d YDXCP  |d BTCTA  |d BDX  |d OCLCF  |d UUM  |d MYG  |d NRC  |d WW9  |d DGU  |d IUL  |d EUM  |d HEBIS  |d OBE  |d VP@  |d FDA  |d TMA  |d LIP  |d OCLCO  |d CTU  |d COH  |d UKWOH  |d OSU  |d U@S 
042 |a pcc 
049 |a U@SA 
050 0 0 |a Q325.5  |b .G66 2016 
082 0 0 |a 006.3/1  |2 23 
100 1 |a Goodfellow, Ian. 
245 1 0 |a Deep learning /  |c Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 
260 |a Cambridge, Massachusetts :  |b MIT Press,  |c c2016. 
300 |a xxii, 775 p. :  |b il. ;  |c 24 cm. 
490 1 |a Adaptive computation and machine learning 
504 |a Incluye referencias bibliográficas (p. 711-766) e índice. 
505 0 |a Introduction -- I. Applied math and machine learning basics: Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- II. Deep networks: modern practices: Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- III. Deep learning research: Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models. 
520 |a "Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and video games. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models."--Contratapa. 
650 0 |a Machine learning. 
650 7 |a Aprendizaje automático.  |2 UDESA 
700 1 |a Bengio, Yoshua. 
700 1 |a Courville, Aaron. 
830 0 |a Adaptive computation and machine learning