|
|
|
|
LEADER |
11234cam a22004454a 4500 |
001 |
990000547010204151 |
005 |
20241030112535.0 |
008 |
080505s2008 njua b 001 0 eng |
010 |
|
|
|a 2008020450
|
015 |
|
|
|a GBA898752
|2 bnb
|
016 |
7 |
|
|a 014691695
|2 Uk
|
020 |
|
|
|a 9780691118802 (hardcover : alk. paper)
|
020 |
|
|
|a 0691118809 (hardcover : alk. paper)
|
035 |
|
|
|a (OCoLC)000054701
|
035 |
|
|
|a (udesa)000054701USA01
|
035 |
|
|
|a (OCoLC)227205932
|
035 |
|
|
|a (OCoLC)990000547010204151
|
040 |
|
|
|a DLC
|c DLC
|d YDXCP
|d BAKER
|d BTCTA
|d UKM
|d C#P
|d BWX
|d CDX
|d IXA
|d NLGGC
|d IGR
|d NOR
|d E5G
|d TSU
|d AKP
|d LMR
|d HEBIS
|d DEBBG
|d U@S
|
049 |
|
|
|a U@SA
|
050 |
0 |
0 |
|a QA11.2
|b .P745 2008
|
082 |
0 |
0 |
|a 510
|2 22
|
245 |
0 |
4 |
|a The Princeton companion to mathematics /
|c editor, Timothy Gowers ; associate editors, June Barrow-Green, Imre Leader.
|
260 |
|
|
|a Princeton :
|b Princeton University Press,
|c c2008.
|
300 |
|
|
|a xx, 1034 p. :
|b ill. ;
|c 26 cm.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g pt. 1.
|t Introduction --
|g 1.1.
|t What is mathematics about? --
|g 1.2. The
|t language and grammar of mathematics --
|g 1.3.
|t Some fundamental mathematical definitions --
|g 1.4. The
|t general goals of mathematical research --
|g pt. 2. The
|t origins of modern mathematics --
|g 2.1.
|t From numbers to number systems --
|g 2.2.
|t Geometry --
|g 2.3. The
|t development of abstract algebra --
|g 2.4.
|t Algorithms --
|g 2.5. The
|t development of rigor in mathematical analysis --
|g 2.6. The
|t development of the idea of proof --
|g 2.7. The
|t crisis in the foundations of mathematics --
|g pt. 3.
|t Mathematical concepts --
|g 3.1. The
|t axiom of choice --
|g 3.2. The
|t axiom of determinacy --
|g 3.3.
|t Bayesian analysis --
|g 3.4.
|t Braid groups --
|g 3.5.
|t Buildings --
|g 3.6.
|t Calabi-Yau manifolds --
|g 3.7.
|t Cardinals --
|g 3.8.
|t Categories --
|g 3.9.
|t Compactness and compactification --
|g 3.10.
|t Computational complexity classes --
|g 3.11.
|t Countable and uncountable sets --
|g 3.12.
|t C* - algebras --
|g 3.13.
|t Curvature --
|g 3.14.
|t Designs --
|g 3.15.
|t Determinants --
|g 3.15.
|t Differential forms and integration --
|g 3.17.
|t Dimension --
|g 3.18.
|t Distributions --
|
505 |
0 |
0 |
|g 3.19.
|t Duality --
|g 3.20.
|t Dynamical systems and chaos --
|g 3.21.
|t Elliptic curves --
|g 3.22. The
|t Euclidean algorithm and continued fractions --
|g 3.23. The
|t Euler and Navier-Stokes equations --
|g 3.24.
|t Expanders --
|g 3.25. The
|t exponential and logarithmic functions --
|g 3.26. The
|t fast Fourier transform --
|g 3.27. The
|t Fourier transform --
|g 3.28.
|t Fuchsian groups --
|g 3.29.
|t Function spaces --
|g 3.30.
|t Galois groups --
|g 3.31. The
|t gamma function --
|g 3.32.
|t Generating functions --
|g 3.33.
|t Genus --
|g 3.34.
|t Graphs --
|g 3.35.
|t Hamiltonians --
|g 3.36. The
|t heat equation --
|g 3.37.
|t Hilbert spaces --
|g 3.38.
|t Homology and cohomology --
|g 3.39.
|t Homotopy Groups --
|g 3.40. The
|t ideal class group --
|g 3.41.
|t Irrational and transcendental numbers --
|g 3.42. The
|t Ising model --
|g 3.43.
|t Jordan normal form --
|g 3.44.
|t Knot polynomials --
|g 3.45.
|t K-theory --
|g 3.46. The
|t leech lattice --
|g 3.47.
|t L-function --
|g 3.48.
|t Lie theory --
|g 3.49.
|t Linear and nonlinear waves and solitons --
|g 3.50.
|t Linear operators and their properties --
|g 3.51.
|t Local and global in number theory --
|g 3.52. The
|t Mandelbrot set --
|g 3.53.
|t Manifolds --
|g 3.54.
|t Matroids --
|g 3.55.
|t Measures --
|
505 |
0 |
0 |
|g 3.56.
|t Metric spaces --
|g 3.57.
|t Models of set theory --
|g 3.58.
|t Modular arithmetic --
|g 3.59.
|t Modular forms --
|g 3.60.
|t Moduli spaces --
|g 3.61. The
|t monster group --
|g 3.62.
|t Normed spaces and banach spaces --
|g 3.63.
|t Number fields --
|g 3.64.
|t Optimization and Lagrange multipliers --
|g 3.65.
|t Orbifolds --
|g 3.66.
|t Ordinals --
|g 3.67. The
|t Peano axioms --
|g 3.68.
|t Permutation groups --
|g 3.69.
|t Phase transitions --
|g 3.70.
|t [pi] --
|g 3.71.
|t Probability distributions --
|g 3.72.
|t Projective space --
|g 3.73.
|t Quadratic forms --
|g 3.74.
|t Quantum computation --
|g 3.75.
|t Quantum groups --
|g 3.76.
|t Quaternions, octonions, and normed division algebras --
|g 3.77.
|t Representations --
|g 3.78.
|t Ricci flow --
|g 3.79.
|t Riemann surfaces --
|g 3.80. The
|t Riemann zeta function --
|g 3.81.
|t Rings, ideals, and modules --
|g 3.82.
|t Schemes --
|g 3.83. The
|t Schrödinger equation --
|g 3.84. The
|t simplex algorithm --
|g 3.85.
|t Special functions --
|g 3.86. The
|t spectrum --
|g 3.87.
|t Spherical harmonics --
|g 3.88.
|t Symplectic manifolds --
|g 3.89.
|t Tensor products --
|g 3.90.
|t Topological spaces --
|g 3.91.
|t Transforms --
|g 3.92.
|t Trigonometric functions --
|g 3.93.
|t Universal covers --
|g 3.94.
|t Variational methods --
|g 3.95.
|t Varieties --
|g 3.96.
|t Vector bundles --
|g 3.97.
|t Von Neumann algebras --
|g 3.98.
|t Wavelets --
|g 3.99. The
|t Zermelo-Fraenkel axioms --
|
505 |
0 |
0 |
|g pt. 4.
|t Branches of mathematics --
|g 4.1.
|t Algebraic numbers --
|g 4.2.
|t Analytic number theory --
|g 4.3.
|t Computational number theory --
|g 4.4.
|t Algebraic geometry --
|g 4.5.
|t Arithmetic geometry --
|g 4.6.
|t Algebraic topology --
|g 4.7.
|t Differential topology --
|g 4.8.
|t Moduli spaces --
|g 4.9.
|t Representation theory --
|g 4.10.
|t Geometric and combinatorial group theory --
|g 4.11.
|t Harmonic analysis --
|g 4.12.
|t Partial differential equations --
|g 4.13.
|t General relativity and the Einstein equations --
|g 4.14.
|t Dynamics --
|g 4.15.
|t Operator algebras --
|g 4.16.
|t Mirror symmetry --
|g 4.17.
|t Vertex operator algebras --
|g 4.18.
|t Enumerative and algebraic combinatorics --
|g 4.19.
|t Extremal and probabilistic combinatorics --
|g 4.20.
|t Computational complexity --
|g 4.21.
|t Numerical analysis --
|g 4.22.
|t Set theory --
|g 4.23.
|t Logic and model theory --
|g 4.24.
|t Stochastic processes --
|g 4.25.
|t Probabilistic models of critical phenomena --
|g 4.26.
|t High-dimensional geometry and its probabilistic analogues --
|
505 |
0 |
0 |
|g pt. 5.
|t Theorems and problems --
|g 5.1. The
|t ABC conjecture --
|g 5.2. The
|t Atiyah-Singer index theorem --
|g 5.3. The
|t Banach-Tarski paradox --
|g 5.4. The
|t Birch-Swinnerton-Dyer conjecture --
|g 5.5.
|t Carleson's theorem --
|g 5.6. The
|t central limit theorem --
|g 5.7. The
|t classification of finite simple groups --
|g 5.8.
|t Dirichlet's theorem --
|g 5.9.
|t Ergodic theorems --
|g 5.10.
|t Fermat's last theorem --
|g 5.11.
|t Fixed point theorems --
|g 5.12. The
|t four-color theorem --
|g 5.13. The
|t fundamental theorem of algebra --
|g 5.14. The
|t fundamental theorem of arithmetic --
|g 5.15.
|t Gödel's theorem --
|g 5.16.
|t Gromov's polynomial-growth theorem --
|g 5.17.
|t Hilbert's nullstellensatz --
|g 5.18. The
|t independence of the continuum hypothesis --
|g 5.19.
|t Inequalities --
|g 5.20. The
|t insolubility of the halting problem --
|g 5.21. The
|t insolubility of the quintic --
|g 5.22.
|t Liouville's theorem and Roth's theorem --
|g 5.23.
|t Mostow's strong rigidity theorem --
|g 5.24. The
|t p versus NP problem --
|g 5.25. The
|t Poincaré conjecture --
|g 5.26. The
|t prime number theorem and the Riemann hypothesis --
|g 5.27.
|t Problems and results in additive number theory --
|g 5.28.
|t From quadratic reciprocity to class field theory --
|g 5.29.
|t Rational points on curves and the Mordell conjecture --
|g 5.30. The
|t resolution of singularities --
|g 5.31. The
|t Riemann-Roch theorem --
|g 5.32. The
|t Robertson-Seymour theorem --
|g 5.33. The
|t three-body problem --
|g 5.34. The
|t uniformization theorem --
|g 5.35. The
|t Weil conjecture --
|
505 |
0 |
0 |
|t pt. 6.
|t Mathematicians --
|g 6.1.
|t Pythagoras --
|g 6.2.
|t Euclid --
|g 6.3.
|t Archimedes --
|g 6.4.
|t Apollonius --
|g 6.5.
|t Abu Ja®far Muhammad ibn Måusåa al-Khwåarizmåi --
|g 6.6.
|t Leonardo of Pisa (known as Fibonacci) --
|g 6.7.
|t Girolamo Cardano --
|g 6.8.
|t Rafael Bombelli --
|g 6.9.
|t François Viète --
|g 6.10.
|t Simon Stevin --
|g 6.11.
|t René Descartes --
|g 6.12.
|t Pierre Fermat --
|g 6.13.
|t Blaise Pascal --
|g 6.14.
|t Isaac Newton --
|g 6.15.
|t Gottfried Wilhelm Leibniz --
|g 6.16.
|t Brook Taylor --
|g 6.17.
|t Christian Goldbach --
|g 6.18. The
|t Bernoullis --
|g 6.19.
|t Leonhard Euler --
|g 6.20.
|t Jean Le Rond d'Alembert --
|g 6.21.
|t Edward Waring --
|g 6.22.
|t Joseph Louis Lagrange --
|g 6.23.
|t Pierre-Simon Laplace --
|g 6.24.
|t Adrien-Marie Legendre --
|g 6.25.
|t Jean-Baptiste Joseph Fourier --
|g 6.26.
|t Carl Friedrich Gauss --
|g 6.27.
|t Siméon-Denis Poisson --
|g 6.28.
|t Bernard Bolzano --
|g 6.29.
|t Augustin-Louis Cauchy --
|g 6.30.
|t August Ferdinand Möbius --
|g 6.31.
|t Nicolai Ivanovich Lobachevskii --
|g 6.32.
|t George Green --
|g 6.33.
|t Niels Henrik Abel --
|g 6.34.
|t János Bolyai --
|g 6.35.
|t Carl Gustav Jacob Jacobi --
|g 6.36.
|t Peter Gustav Lejeune Dirichlet --
|g 6.37.
|t William Rowan Hamilton --
|g 6.38.
|t Augustus De Morgan --
|g 6.39.
|t Joseph Liouville --
|g 6.40.
|t Eduard Kummer --
|
505 |
0 |
0 |
|g 6.41.
|t Évariste Galois --
|g 6.42.
|t James Joseph Sylvester --
|g 6.43.
|t George Boole --
|g 6.44.
|t Karl Weierstrass --
|g 6.45.
|t Pafnuty Chebyshev --
|g 6.46.
|t Arthur Cayley --
|g 6.47.
|t Charles Hermite --
|g 6.48.
|t Leopold Kronecker --
|g 6.49.
|t Georg Friedrich Bernhard Riemann --
|g 6.50.
|t Julius Wilhelm Richard Dedekind --
|g 6.51.
|t Émile Léonard Mathieu --
|g 6.52.
|t Camille Jordan --
|g 6.53.
|t Sophus Lie --
|g 6.54.
|t Georg Cantor --
|g 6.55.
|t William Kingdon Clifford --
|g 6.56.
|t Gottlob Frege --
|g 6.57.
|t Christian Felix Klein --
|g 6.58.
|t Ferdinand Georg Frobenius --
|g 6.59.
|t Sofya (Sonya) Kovalevskaya --
|g 6.60.
|t William Burnside --
|g 6.61.
|t Jules Henri Poincaré --
|g 6.62.
|t Giuseppe Peano --
|g 6.63.
|t David Hilbert --
|g 6.64.
|t Hermann Minkowski --
|g 6.65.
|t Jacques Hadamard --
|g 6.66.
|t Ivar Fredholm --
|g 6.67.
|t Charles-Jean de la Vallée Poussin --
|g 6.68.
|t Felix Hausdorff --
|g 6.69.
|t Élie Joseph Cartan --
|g 6.70.
|t Emile Borel --
|g 6.71.
|t Bertrand Arthur William Russell --
|g 6.72.
|t Henri Lebesgue --
|g 6.73.
|t Godfrey Harold Hardy --
|g 6.74.
|t Frigyes (Frédéric) Riesz --
|
505 |
0 |
0 |
|g 6.75.
|t Luitzen Egbertus Jan Brouwer --
|g 6.76.
|t Emmy Noether --
|g 6.77.
|t Wac±aw Sierpiânski --
|g 6.78.
|t George Birkhoff --
|g 6.79.
|t John Edensor Littlewood --
|g 6.80.
|t Hermann Weyl --
|g 6.81.
|t Thoralf Skolem --
|g 6.82.
|t Srinivasa Ramanujan --
|g 6.83.
|t Richard Courant --
|g 6.84.
|t Stefan Banach --
|g 6.85.
|t Norbert Wiener --
|g 6.86.
|t Emil Artin --
|g 6.87.
|t Alfred Tarski --
|g 6.88.
|t Andrei Nikolaevich Kolmogorov --
|g 6.89.
|t Alonzo Church --
|g 6.90.
|t William Vallance Douglas Hodge --
|g 6.91.
|t John von Neumann --
|g 6.92.
|t Kurt Gödel --
|g 6.93.
|t André Weil --
|g 6.94.
|t Alan Turing --
|g 6.95.
|t Abraham Robinson --
|g 6.96.
|t Nicolas Bourbaki --
|
505 |
0 |
0 |
|g pt. 7. The
|t influence of mathematics --
|g 7.1.
|t Mathematics and chemistry --
|g 7.2.
|t Mathematical biology --
|g 7.3.
|t Wavelets and applications --
|g 7.4. The
|t mathematics of traffic in networks --
|g 7.5. The
|t mathematics of algorithm design --
|g 7.6
|t Reliable transmission of information --
|g 7.7.
|t Mathematics and cryptography --
|g 7.8.
|t Mathematics and economic reasoning --
|g 7.9. The
|t mathematics of money --
|g 7.10.
|t Mathematical statistics --
|g 7.11.
|t Mathematics and medical statistics --
|g 7.12.
|t Analysis, mathematical and philosophical --
|g 7.13.
|t Mathematics and music --
|g 7.14.
|t Mathematics and art --
|g pt. 8.
|t Final perspectives --
|g 8.1. The
|t art of problem solving --
|g 8.2.
|t "Why mathematics?" you might ask --
|g 8.3. The
|t ubiquity of mathematics --
|g 8.4.
|t Numeracy --
|g 8.5.
|t Mathematics : an experimental science --
|g 8.6.
|t Advice to a young mathematician --
|g 8.7. A
|t chronology of mathematical events.
|
650 |
|
0 |
|a Mathematics.
|
700 |
1 |
|
|a Gowers, Timothy.
|
700 |
1 |
|
|a Barrow-Green, June,
|d 1953-
|
700 |
1 |
|
|a Leader, Imre.
|
710 |
2 |
|
|a Princeton University.
|
856 |
4 |
1 |
|3 Table of contents only
|u http://www.loc.gov/catdir/toc/ecip0818/2008020450.html
|