God created the integers : the mathematical breakthroughs that changed history /

Includes works by : Euclid, Archimedes, Diophantus, Rene Descartes, Isaac Newton, Pierre Simon De LaPlace, Jean Baptiste Joseph Fourier, Carl Friedrich Gauss, Augustin-Louis Cauchy, George Boole, Georg Friedrich Bernhard Riemann, Karl Weierstrass, Richard Julius Wilhelm Dedekind, Georg Cantor, Henri...

Descripción completa

Detalles Bibliográficos
Otros Autores: Hawking, Stephen, 1942-2018
Formato: Libro
Lenguaje:Inglés
Publicado: Philadelphia, Pa. : Running Press, c2005.
Materias:
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05173cam a2200373Ia 4500
001 990000544940204151
005 20241030112534.0
008 051020s2005 pau 000 0ceng d
010 |a  2005924493 
015 |a GBA569041  |2 bnb 
016 7 |a 013274376  |2 Uk 
019 |a 61302432  |a 61743776 
020 |a 0762419229 (hbk.) 
020 |a 9780762419227 (hbk.) 
035 |a (OCoLC)000054494 
035 |a (udesa)000054494USA01 
035 |a (OCoLC)62121812  |z (OCoLC)61302432  |z (OCoLC)61743776 
035 |a (OCoLC)990000544940204151 
040 |a FMG  |c FMG  |d BAKER  |d UKM  |d KUT  |d ICS  |d VP@  |d GZM  |d LMR  |d OCLCQ  |d YDXCP  |d OCLCQ  |d VRC  |d BTCTA  |d NOR  |d AU@  |d XXH  |d SMP  |d CQU  |d NXA  |d ZKU  |d U@S 
049 |a U@SA 
050 4 |a QA21  |b .G63 2005 
082 0 4 |a 510  |2 22 
245 0 0 |a God created the integers :  |b the mathematical breakthroughs that changed history /  |c edited, with commentary, by Stephen Hawking. 
260 |a Philadelphia, Pa. :  |b Running Press,  |c c2005. 
300 |a xiii, 1160 p. ;  |c 24 cm. 
505 0 0 |t Introduction --  |g [pt. 1].  |t Euclid (c.325 BC-265 BC) : His life and work --  |t Selections form Euclid's Elements --  |t Book 1 : Basic geometry - definitions, postulates, common notions and proposition 47 (leading up to the Pythagorean Theorem) --  |t Book 5 : The Eudoxian theory of proportion - definitions & propositions --  |t Book 7 : Elementary number theory - definitions & propositions --  |t Book 9 : Proposition 20 : The infinitude of prime numbers --  |t Book 10 : Commensurable and incommensurable magnitudes --  |g [pt. 2].  |t Archimedes (287 BC-212 BC) : His life and work --  |t Selections form The Works of Archimedes --  |t On the sphere and cylinder, book 1--  |t On the sphere and cylinder, book 2 --  |t Measurement of a circle --  |g The  |t sand reckoner --  |g The  |t methods --  |g [pt. 3].  |t Diophantus (third century AD) : His life and work --  |t Selections from Diophantus of Alexandria, A Study in the History of Greek Algebra --  |t Book 2 problems 8-35 --  |t Book 3 problems 5-21 --  |t Book 5 problems 1-29 -- 
505 0 0 |g [pt. 4].  |t René Descartes (1596-1650) : His life and work --  |g The  |t geometry of Rene Descartes --  |g [pt. 5].  |t Isaac Newton (1642-1727) : His life and work --  |t Selections from Principia --  |t Book 1 : Of the motion of bodies --  |g [pt. 6].  |t Pierre Simon de Laplace (1749-1827) : His life and work --  |g A  |t philosophical essay on probabilities --  |g [pt. 7].  |t Jean Baptiste Joseph Fourier (1768-1830) : His life and work --  |t Selection from The Analytical Theory of Heat --  |t Chapter 3 : Propagation of heat in an infinite rectangular solid (The Fourier series) --  |g [pt. 8].  |t Carl Friedrich Gauss (1777-1855) : His life and work --  |t Selections from Disquisitiones Arithmeticae (Arithmetic Disquisitions) --  |t Section 3 Residues of powers --  |t Section 4 Congruences of the second degree --  |g [pt. 9].  |t Augustin-Louis Cauchy (1789-1857) : His life and work --  |t Selection from Oeuvres complètes d'Augustin Cauchy --  |t Resume des lecons donnees a l'Ecole Royale Polytechnique sur le calcul infinitesimal (1823), series 2, vol. 4 --  |t Lessons 3-4 on differential calculus --  |t Lessons 21-24 on the integral -- 
505 0 0 |g [pt. 10].  |t George Boole (1815-1864) : His life and work --  |g An  |t investigation of the laws of thought --  |g [pt. 11].  |t George Friedrich Bernhard Riemann (1826-1866) : His life and work --  |t On the representability of a function by means of a trigonometric series (Ueber die darstellbarkeit einer function durch einer trigonometrische reihe) --  |t On the hypotheses which lie at the bases of geometry (Ueber die hypothesen welche der geometrie zu grunde liegen) --  |t On the number of prime numbers less than a given quantity (Ueber di anzahl of primzahlen unter eine gegeben grosse) --  |g [pt. 12].  |t Karl Weierstrass (1815-1897) : His life and work --  |g A  |t theory of functions (Lecture given in Berlin in 1886, with the Inaugural Academic Speech, Berlin 1857) --  |t 7 : Uniform continuity (Gleichmässige Stetigkeit) --  |g [pt. 13].  |t Richard Julius Wilhelm Dedekind (1831-1916) : His life and work --  |t Essays on the theory of numbers --  |g [pt. 14].  |t Georg Cantor (1845-1918) : His life and work --  |t Selections from Contributions to the founding of the theory of transfinite numbers --  |t Articles 1 and 2 -- 
505 0 0 |g [pt. 15].  |t Henri Lebesgue (1875-1941) : His life and work --  |t Selections from Integrale, Longueur, Aire (Integral, Length, Area) --  |g [pt. 16].  |t Kurt Gödel (1906-1978) : His life and work --  |t On formally undecidable propositions of principia mathematics and related systems --  |g [pt. 17].  |t Alan Mathison Turing (1912-1954) : His life and work --  |t On computable numbers with an application to the entscheidungsproblem, proceedings of the London Mathematical Society. 
520 8 |a Includes works by : Euclid, Archimedes, Diophantus, Rene Descartes, Isaac Newton, Pierre Simon De LaPlace, Jean Baptiste Joseph Fourier, Carl Friedrich Gauss, Augustin-Louis Cauchy, George Boole, Georg Friedrich Bernhard Riemann, Karl Weierstrass, Richard Julius Wilhelm Dedekind, Georg Cantor, Henri Lebesgue, Kurt Godel, Alan Mathison Turing. 
650 0 |a Mathematics. 
650 0 |a Mathematics  |x History. 
650 0 |a Mathematicians  |v Biography. 
700 1 |a Hawking, Stephen,  |d 1942-2018.