|
|
|
|
LEADER |
05173cam a2200373Ia 4500 |
001 |
990000544940204151 |
005 |
20241030112534.0 |
008 |
051020s2005 pau 000 0ceng d |
010 |
|
|
|a 2005924493
|
015 |
|
|
|a GBA569041
|2 bnb
|
016 |
7 |
|
|a 013274376
|2 Uk
|
019 |
|
|
|a 61302432
|a 61743776
|
020 |
|
|
|a 0762419229 (hbk.)
|
020 |
|
|
|a 9780762419227 (hbk.)
|
035 |
|
|
|a (OCoLC)000054494
|
035 |
|
|
|a (udesa)000054494USA01
|
035 |
|
|
|a (OCoLC)62121812
|z (OCoLC)61302432
|z (OCoLC)61743776
|
035 |
|
|
|a (OCoLC)990000544940204151
|
040 |
|
|
|a FMG
|c FMG
|d BAKER
|d UKM
|d KUT
|d ICS
|d VP@
|d GZM
|d LMR
|d OCLCQ
|d YDXCP
|d OCLCQ
|d VRC
|d BTCTA
|d NOR
|d AU@
|d XXH
|d SMP
|d CQU
|d NXA
|d ZKU
|d U@S
|
049 |
|
|
|a U@SA
|
050 |
|
4 |
|a QA21
|b .G63 2005
|
082 |
0 |
4 |
|a 510
|2 22
|
245 |
0 |
0 |
|a God created the integers :
|b the mathematical breakthroughs that changed history /
|c edited, with commentary, by Stephen Hawking.
|
260 |
|
|
|a Philadelphia, Pa. :
|b Running Press,
|c c2005.
|
300 |
|
|
|a xiii, 1160 p. ;
|c 24 cm.
|
505 |
0 |
0 |
|t Introduction --
|g [pt. 1].
|t Euclid (c.325 BC-265 BC) : His life and work --
|t Selections form Euclid's Elements --
|t Book 1 : Basic geometry - definitions, postulates, common notions and proposition 47 (leading up to the Pythagorean Theorem) --
|t Book 5 : The Eudoxian theory of proportion - definitions & propositions --
|t Book 7 : Elementary number theory - definitions & propositions --
|t Book 9 : Proposition 20 : The infinitude of prime numbers --
|t Book 10 : Commensurable and incommensurable magnitudes --
|g [pt. 2].
|t Archimedes (287 BC-212 BC) : His life and work --
|t Selections form The Works of Archimedes --
|t On the sphere and cylinder, book 1--
|t On the sphere and cylinder, book 2 --
|t Measurement of a circle --
|g The
|t sand reckoner --
|g The
|t methods --
|g [pt. 3].
|t Diophantus (third century AD) : His life and work --
|t Selections from Diophantus of Alexandria, A Study in the History of Greek Algebra --
|t Book 2 problems 8-35 --
|t Book 3 problems 5-21 --
|t Book 5 problems 1-29 --
|
505 |
0 |
0 |
|g [pt. 4].
|t René Descartes (1596-1650) : His life and work --
|g The
|t geometry of Rene Descartes --
|g [pt. 5].
|t Isaac Newton (1642-1727) : His life and work --
|t Selections from Principia --
|t Book 1 : Of the motion of bodies --
|g [pt. 6].
|t Pierre Simon de Laplace (1749-1827) : His life and work --
|g A
|t philosophical essay on probabilities --
|g [pt. 7].
|t Jean Baptiste Joseph Fourier (1768-1830) : His life and work --
|t Selection from The Analytical Theory of Heat --
|t Chapter 3 : Propagation of heat in an infinite rectangular solid (The Fourier series) --
|g [pt. 8].
|t Carl Friedrich Gauss (1777-1855) : His life and work --
|t Selections from Disquisitiones Arithmeticae (Arithmetic Disquisitions) --
|t Section 3 Residues of powers --
|t Section 4 Congruences of the second degree --
|g [pt. 9].
|t Augustin-Louis Cauchy (1789-1857) : His life and work --
|t Selection from Oeuvres complètes d'Augustin Cauchy --
|t Resume des lecons donnees a l'Ecole Royale Polytechnique sur le calcul infinitesimal (1823), series 2, vol. 4 --
|t Lessons 3-4 on differential calculus --
|t Lessons 21-24 on the integral --
|
505 |
0 |
0 |
|g [pt. 10].
|t George Boole (1815-1864) : His life and work --
|g An
|t investigation of the laws of thought --
|g [pt. 11].
|t George Friedrich Bernhard Riemann (1826-1866) : His life and work --
|t On the representability of a function by means of a trigonometric series (Ueber die darstellbarkeit einer function durch einer trigonometrische reihe) --
|t On the hypotheses which lie at the bases of geometry (Ueber die hypothesen welche der geometrie zu grunde liegen) --
|t On the number of prime numbers less than a given quantity (Ueber di anzahl of primzahlen unter eine gegeben grosse) --
|g [pt. 12].
|t Karl Weierstrass (1815-1897) : His life and work --
|g A
|t theory of functions (Lecture given in Berlin in 1886, with the Inaugural Academic Speech, Berlin 1857) --
|t 7 : Uniform continuity (Gleichmässige Stetigkeit) --
|g [pt. 13].
|t Richard Julius Wilhelm Dedekind (1831-1916) : His life and work --
|t Essays on the theory of numbers --
|g [pt. 14].
|t Georg Cantor (1845-1918) : His life and work --
|t Selections from Contributions to the founding of the theory of transfinite numbers --
|t Articles 1 and 2 --
|
505 |
0 |
0 |
|g [pt. 15].
|t Henri Lebesgue (1875-1941) : His life and work --
|t Selections from Integrale, Longueur, Aire (Integral, Length, Area) --
|g [pt. 16].
|t Kurt Gödel (1906-1978) : His life and work --
|t On formally undecidable propositions of principia mathematics and related systems --
|g [pt. 17].
|t Alan Mathison Turing (1912-1954) : His life and work --
|t On computable numbers with an application to the entscheidungsproblem, proceedings of the London Mathematical Society.
|
520 |
8 |
|
|a Includes works by : Euclid, Archimedes, Diophantus, Rene Descartes, Isaac Newton, Pierre Simon De LaPlace, Jean Baptiste Joseph Fourier, Carl Friedrich Gauss, Augustin-Louis Cauchy, George Boole, Georg Friedrich Bernhard Riemann, Karl Weierstrass, Richard Julius Wilhelm Dedekind, Georg Cantor, Henri Lebesgue, Kurt Godel, Alan Mathison Turing.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Mathematics
|x History.
|
650 |
|
0 |
|a Mathematicians
|v Biography.
|
700 |
1 |
|
|a Hawking, Stephen,
|d 1942-2018.
|