Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation

This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled da...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wang, Danwei
Otros Autores: Ye, Yongqiang, Zhang, Bin
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Singapore : Springer Singapore : Imprint: Springer, 2014.
Colección:Advances in Industrial Control,
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-981-4585-60-6
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03285Cam#a22004695i#4500
001 INGC-EBK-000937
003 AR-LpUFI
005 20220927110225.0
007 cr nn 008mamaa
008 140619s2014 si | s |||| 0|eng d
020 |a 9789814585606 
024 7 |a 10.1007/978-981-4585-60-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Wang, Danwei.  |9 262336 
245 1 0 |a Practical Iterative Learning Control with Frequency Domain Design and Sampled Data Implementation   |h [libro electrónico] /   |c by Danwei Wang, Yongqiang Ye, Bin Zhang. 
260 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2014. 
300 |a xii, 226 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 1430-9491 
505 0 |a Introduction -- Extend Learnable Band and Multi-channel Configuration -- Learnable Bandwidth Extension by Auto-Tunings -- Reverse Time Filtering Based ILC -- Wavelet Transform based Frequency Tuning ILC -- Learning Transient Performance with Cutoff-Frequency Phase-In -- Downsampled ILC -- Cyclic Pseudo-Downsampled ILC. 
520 |a This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much higher accuracy than a feedback control alone can offer. With the proposed ILC algorithms, it is possible that machines can work to their hardware design limits set by sensors and actuators. The target audience for this book includes scientists, engineers and practitioners involved in any systems with repetitive operations. 
650 0 |a Artificial intelligence.  |9 259770 
650 0 |a Neural networks (Computer science).  |9 259839 
650 0 |a Statistical physics.  |9 260517 
650 0 |a Computational intelligence.  |9 259845 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Mathematical Models of Cognitive Processes  |9 259841 
650 2 4 |a Nonlinear Dynamics.  |9 260518 
700 1 |a Ye, Yongqiang.  |9 262337 
700 1 |a Zhang, Bin.  |9 262338 
776 0 8 |i Printed edition:  |z 9789814585590 
856 4 0 |u http://dx.doi.org/10.1007/978-981-4585-60-6 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28365  |d 28365