Knowledge-Based Driver Assistance Systems Traffic Situation Description and Situation Feature Relevance /

The comprehension of a traffic situation plays a major role in driving a vehicle. Interpretable information forms a basis for future projection, decision making and action performing, such as navigating, maneuvering and driving control. Michael Huelsen provides an ontology-based generic traffic situ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Huelsen, Michael
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-658-05750-3
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03424Cam#a22004695i#4500
001 INGC-EBK-000783
003 AR-LpUFI
005 20220927110115.0
007 cr nn 008mamaa
008 140423s2014 gw | s |||| 0|eng d
020 |a 9783658057503 
024 7 |a 10.1007/978-3-658-05750-3  |2 doi 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
100 1 |a Huelsen, Michael.  |9 261967 
245 1 0 |a Knowledge-Based Driver Assistance Systems   |h [libro electrónico] : ;   |b Traffic Situation Description and Situation Feature Relevance /  |c by Michael Huelsen. 
260 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2014. 
300 |a xvii, 176 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- The Research Domain of this Thesis and its State of the Art -- Theoretical Foundations Relevant to this Thesis -- Situation Feature Relevance on Measurement Data -- Knowledge-Based Traffic Situation Description -- Relevance by Mutual Information on Ontology Features -- Conclusion. 
520 |a The comprehension of a traffic situation plays a major role in driving a vehicle. Interpretable information forms a basis for future projection, decision making and action performing, such as navigating, maneuvering and driving control. Michael Huelsen provides an ontology-based generic traffic situation description capable of supplying various advanced driver assistance systems with relevant information about the current traffic situation of a vehicle and its environment. These systems are enabled to perform reasonable actions and approach visionary goals such as injury and accident free driving, substantial assistance in arbitrary situations up to even autonomous driving.  Content Situation Feature Relevance on Vehicle Measurement Data Relevance of Historical Measurement Values Knowledge-Based Traffic Situation Description and Simulation Relevance by Mutual Information on Ontology Features Target Groups Researchers, lecturers and students in the fields of automotive engineering, mechatronics, computer science and artificial intelligence Engineers and developers in the automotive industry, specifically areas of driver assistance systems, vehicle control and mechatronics The Author Michael Huelsen completed his doctoral thesis in a cooperation between the Karlsruhe Institute of Technology (KIT) and the Robert Bosch GmbH. After working in automotive development he is now working in a leading position in purchasing and value engineering at a renowned company manufacturing electrical traction systems. 
650 0 |a Data structures (Computer science).  |9 261445 
650 0 |a Applied mathematics.  |9 259589 
650 0 |a Engineering mathematics.  |9 259590 
650 0 |a Control engineering.  |9 259595 
650 0 |a Robotics.  |9 259596 
650 0 |a Mechatronics.  |9 259597 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Methods of Engineering.  |9 260047 
650 2 4 |a Cryptology and Information Theory.  |9 261446 
776 0 8 |i Printed edition:  |z 9783658057497 
856 4 0 |u http://dx.doi.org/10.1007/978-3-658-05750-3 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28211  |d 28211