Compressed Sensing & Sparse Filtering

This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Carmi, Avishy Y (ed.), Mihaylova, Lyudmila (ed.), Godsill, Simon J (ed.)
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Colección:Signals and Communication Technology,
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-642-38398-4
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04128Cam#a22005295i#4500
001 INGC-EBK-000629
003 AR-LpUFI
005 20220927110012.0
007 cr nn 008mamaa
008 130913s2014 gw | s |||| 0|eng d
020 |a 9783642383984 
024 7 |a 10.1007/978-3-642-38398-4  |2 doi 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
245 1 0 |a Compressed Sensing & Sparse Filtering   |h [libro electrónico] /   |c edited by Avishy Y. Carmi, Lyudmila Mihaylova, Simon J. Godsill. 
260 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a xii, 502 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction to Compressed Sensing and Sparse Filtering -- The Geometry of Compressed Sensing -- Sparse Signal Recovery with Exponential-Family Noise -- Nuclear Norm Optimization and its Application to Observation Model Specification -- Nonnegative Tensor Decomposition -- Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks -- Sparse Nonlinear MIMO Filtering and Identification -- Optimization Viewpoint on Kalman Smoothing with Applications to Robust and Sparse Estimation -- Compressive System Identification -- Distributed Approximation and Tracking using Selective Gossip -- Recursive Reconstruction of Sparse Signal Sequences -- Estimation of Time-Varying Sparse Signals in Sensor Networks -- Sparsity and Compressed Sensing in Mono-static and Multi-static Radar Imaging -- Structured Sparse Bayesian Modelling for Audio Restoration -- Sparse Representations for Speech Recognition. 
520 |a This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary.  Apart from compressed sensing this book contains other related approaches. Each methodology has its own formalities for dealing with such problems. As an example, in the Bayesian approach, sparseness promoting priors such as Laplace and Cauchy are normally used for penalising improbable model variables, thus promoting low complexity solutions. Compressed sensing techniques and homotopy-type solutions, such as the LASSO, utilise l1-norm penalties for obtaining sparse solutions using fewer observations than conventionally needed. The book emphasizes on the role of sparsity as a machinery for promoting low complexity representations and likewise its connections to variable selection and dimensionality reduction in various engineering problems.  This book is intended for researchers, academics and practitioners with interest in various aspects and applications of sparse signal processing.  . 
650 0 |a Numerical analysis.  |9 260924 
650 0 |a Algorithms.  |9 260625 
650 0 |a Complexity, Computational.  |9 259624 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Signal, Image and Speech Processing.  |9 259616 
650 2 4 |a Numeric Computing.  |9 260925 
650 2 4 |a Mathematics of Algorithmic Complexity.  |9 261608 
650 2 4 |a Complexity.  |9 260162 
700 1 |a Carmi, Avishy Y,   |e ed.  |9 261609 
700 1 |a Mihaylova, Lyudmila,   |e ed.  |9 261610 
700 1 |a Godsill, Simon J,   |e ed.  |9 261611 
776 0 8 |i Printed edition:  |z 9783642383977 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-38398-4 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 28057  |d 28057