Astronomy and Big Data A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /

With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing h...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Edwards, Kieran Jay
Otros Autores: Gaber, Mohamed Medhat
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Big Data, 6
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-06599-1
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03214Cam#a22004575i#4500
001 INGC-EBK-000529
003 AR-LpUFI
005 20220927105929.0
007 cr nn 008mamaa
008 140412s2014 gw | s |||| 0|eng d
020 |a 9783319065991 
024 7 |a 10.1007/978-3-319-06599-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Edwards, Kieran Jay.  |9 261321 
245 1 0 |a Astronomy and Big Data   |h [libro electrónico] : ;   |b A Data Clustering Approach to Identifying Uncertain Galaxy Morphology /  |c by Kieran Jay Edwards, Mohamed Medhat Gaber. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xii, 105 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6503 ;  |v 6 
505 0 |a Introduction -- Astronomy, Galaxies and Stars: An Overview -- Astronomical Data Mining -- Adopted Data Mining Methods -- Research Methodology -- Development of Data Mining Models -- Experimentation Results -- Conclusion and Future Work. 
520 |a With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as â_oUncertainâ__. This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants. 
650 0 |a Engineering.  |9 259622 
650 0 |a Data mining.  |9 259837 
650 0 |a Observations, Astronomical.  |9 260110 
650 0 |a Astronomy  |x Observations.  |9 261322 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Knowledge Discovery.  |9 259842 
700 1 |a Gaber, Mohamed Medhat.  |9 260718 
776 0 8 |i Printed edition:  |z 9783319065984 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06599-1 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27957  |d 27957