System Identification and Adaptive Control Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models /

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Boutalis, Yiannis
Otros Autores: Theodoridis, Dimitrios, Kottas, Theodore, Christodoulou, Manolis A.
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Advances in Industrial Control,
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-06364-5
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04753Cam#a22004815i#4500
001 INGC-EBK-000518
003 AR-LpUFI
005 20220927105925.0
007 cr nn 008mamaa
008 140422s2014 gw | s |||| 0|eng d
020 |a 9783319063645 
024 7 |a 10.1007/978-3-319-06364-5  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
100 1 |a Boutalis, Yiannis.  |9 261293 
245 1 0 |a System Identification and Adaptive Control   |h [libro electrónico] : ;   |b Theory and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models /   |c by Yiannis Boutalis...[et al.]. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xii, 313 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Industrial Control,  |x 1430-9491 
505 0 |a Part I The Recurrent Neurofuzzy Model -- Introduction and Scope -- Identification of Dynamical Systems Using Recurrent Neurofuzzy Modeling -- Indirect Adaptive Control Based on the Recurrent Neurofuzzy Model -- Direct Adaptive Neurofuzzy Control of SISO Systems -- Direct Adaptive Neurofuzzy Control of MIMO Systems -- Selected Applications -- Part II The Fuzzy Cognitive Network Model: Introduction and Outline -- Existence and Uniqueness of Solutions in FCN -- Adaptive Estimation Algorithms of FCN Parameters -- Framework of Operation and Selected Applications. 
520 |a Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented.  Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model  stems  from fuzzy cognitive maps and uses the notion of â_oconceptsâ__ and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems.  All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: â_¢Â Â Â Â Â Â Â Â Â Â Â Â  contemporary power generation; â_¢Â Â Â Â Â Â Â Â Â Â Â Â  process control; and â_¢Â Â Â Â Â Â Â Â Â Â Â Â  conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control. 
650 0 |a Engineering.  |9 259622 
650 0 |a Computational intelligence.  |9 259845 
650 0 |a Control engineering.  |9 259595 
650 0 |a Industrial engineering.  |9 259757 
650 0 |a Production engineering.  |9 259758 
650 2 4 |a Control.  |9 263886 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Theodoridis, Dimitrios.  |9 261294 
700 1 |a Kottas, Theodore.  |9 261295 
700 1 |a Christodoulou, Manolis A.  |9 261296 
776 0 8 |i Printed edition:  |z 9783319063638 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-06364-5 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27946  |d 27946