A Brief Introduction to Continuous Evolutionary Optimization

Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algo...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Kramer, Oliver
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:SpringerBriefs in Applied Sciences and Technology,
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-03422-5
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02737Cam#a22003975i#4500
001 INGC-EBK-000349
003 AR-LpUFI
005 20220927105813.0
007 cr nn 008mamaa
008 131204s2014 gw | s |||| 0|eng d
020 |a 9783319034225 
024 7 |a 10.1007/978-3-319-03422-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Kramer, Oliver.  |9 260857 
245 1 2 |a A Brief Introduction to Continuous Evolutionary Optimization   |h [libro electrónico] /   |c by Oliver Kramer. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xi, 94 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Part I Foundations -- Part II Advanced Optimization -- Part III Learning -- Part IV Appendix. 
520 |a Practical optimization problems are often hard to solve, in particular when they are black boxes and no further information about the problem is available except via function evaluations. This work introduces a collection of heuristics and algorithms for black box optimization with evolutionary algorithms in continuous solution spaces. The book gives an introduction to evolution strategies and parameter control. Heuristic extensions are presented that allow optimization in constrained, multimodal, and multi-objective solution spaces. An adaptive penalty function is introduced for constrained optimization. Meta-models reduce the number of fitness and constraint function calls in expensive optimization problems. The hybridization of evolution strategies with local search allows fast optimization in solution spaces with many local optima. A selection operator based on reference lines in objective space is introduced to optimize multiple conflictive objectives. Evolutionary search is employed for learning kernel parameters of the Nadaraya-Watson estimator, and a swarm-based iterative approach is presented for optimizing latent points in dimensionality reduction problems. Experiments on typical benchmark problems as well as numerous figures and diagrams illustrate the behavior of the introduced concepts and methods. 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
776 0 8 |i Printed edition:  |z 9783319034218 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-03422-5 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27777  |d 27777