Educational Data Mining Applications and Trends /

This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research.  After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: Â...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Peña-Ayala, Alejandro (ed.)
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Computational Intelligence, 524
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-02738-8
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03357Cam#a22003855i#4500
001 INGC-EBK-000308
003 AR-LpUFI
005 20220927105758.0
007 cr nn 008mamaa
008 131106s2014 gw | s |||| 0|eng d
020 |a 9783319027388 
024 7 |a 10.1007/978-3-319-02738-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
245 1 0 |a Educational Data Mining   |h [libro electrónico] : ;   |b Applications and Trends /   |c edited by Alejandro Peña-Ayala. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xviii, 468 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 524 
520 |a This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research.  After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: ·     Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. ·     Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the students academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. ·     Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. ·     Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks. This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining. 
650 1 4 |a Engineering.  |9 259622 
650 2 4 |a Computational Intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
700 1 |a Peña-Ayala, Alejandro,   |e ed.  |9 260731 
776 0 8 |i Printed edition:  |z 9783319027371 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02738-8 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27736  |d 27736