Artificial Organic Networks Artificial Intelligence Based on Carbon Networks /

This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms desig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ponce-Espinosa, Hiram
Otros Autores: Ponce-Cruz, Pedro, Molina, Arturo
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Computational Intelligence, 521
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-02472-1
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03687Cam#a22004575i#4500
001 INGC-EBK-000286
003 AR-LpUFI
005 20220927105749.0
007 cr nn 008mamaa
008 131112s2014 gw | s |||| 0|eng d
020 |a 9783319024721 
024 7 |a 10.1007/978-3-319-02472-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Ponce-Espinosa, Hiram.  |9 260667 
245 1 0 |a Artificial Organic Networks   |h [libro electrónico] : ;   |b Artificial Intelligence Based on Carbon Networks /  |c by Hiram Ponce-Espinosa, Pedro Ponce-Cruz, Arturo Molina. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xii, 228 p. :   |b il. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 521 
505 0 |a Introduction to Modeling Problems -- Chemical Organic Compounds -- Artificial Organic Networks -- Artificial Hydrocarbon Networks -- Enhancements of Artificial Hydrocarbon Networks -- Notes on Modeling Problems Using Artificial Hydrocarbon Networks -- Applications of Artificial Hydrocarbon Networks.-Appendices. 
520 |a This monograph describes the synthesis and use of biologically-inspired artificial hydrocarbon networks (AHNs) for approximation models associated with machine learning and a novel computational algorithm with which to exploit them. The reader is first introduced to various kinds of algorithms designed to deal with approximation problems and then, via some conventional ideas of organic chemistry, to the creation and characterization of artificial organic networks and AHNs in particular. The advantages of using organic networks are discussed with the rules to be followed to adapt the network to its objectives. Graph theory is used as the basis of the necessary formalism. Simulated and experimental examples of the use of fuzzy logic and genetic algorithms with organic neural networks are presented and a number of modeling problems suitable for treatment by AHNs are described: ·        approximation; ·        inference; ·        clustering; ·        control; ·        classification; and ·        audio-signal filtering. The text finishes with a consideration of directions in which AHNs  could be implemented and developed in future. A complete LabVIEWâ"¢ toolkit, downloadable from the bookâ_Ts page at springer.com enables readers to design and implement organic neural networks of their own. The novel approach to creating networks suitable for machine learning systems demonstrated in Artificial Organic Networks will be of interest to academic researchers and graduate students working in areas associated with computational intelligence, intelligent control, systems approximation and complex networks. 
650 0 |a Engineering.  |9 259622 
650 0 |a Biochemical engineering.  |9 260668 
650 0 |a Computer simulation.  |9 259720 
650 0 |a Computational intelligence.  |9 259845 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Simulation and Modeling.  |9 259727 
700 1 |a Ponce-Cruz, Pedro.  |9 260669 
700 1 |a Molina, Arturo.  |9 260670 
776 0 8 |i Printed edition:  |z 9783319024714 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-02472-1 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27714  |d 27714