Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis

The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Mrugalski, Marcin
Formato: Libro electrónico
Lenguaje:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Colección:Studies in Computational Intelligence, 510
Materias:
Acceso en línea:http://dx.doi.org/10.1007/978-3-319-01547-7
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02794Cam#a22004335i#4500
001 INGC-EBK-000226
003 AR-LpUFI
005 20220927105725.0
007 cr nn 008mamaa
008 130802s2014 gw | s |||| 0|eng d
020 |a 9783319015477 
024 7 |a 10.1007/978-3-319-01547-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
100 1 |a Mrugalski, Marcin.  |9 260493 
245 1 0 |a Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis   |h [libro electrónico] /   |c by Marcin Mrugalski. 
260 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a xxi, 182 p. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 510 
505 0 |a Introduction -- Designing of dynamic neural networks -- Estimation methods in training of ANNs for robust fault diagnosis -- MLP in robust fault detection of static non-linear systems -- GMDH networks in robust fault detection of dynamic non-linear systems -- State-space GMDH networks for actuator robust FDI. 
520 |a The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.  . 
650 0 |a Engineering.  |9 259622 
650 0 |a Computational intelligence.  |9 259845 
650 0 |a Control engineering.  |9 259595 
650 2 4 |a Artificial Intelligence (incl. Robotics).  |9 259846 
650 2 4 |a Complexity.  |9 260162 
650 2 4 |a Control.  |9 263886 
776 0 8 |i Printed edition:  |z 9783319015460 
856 4 0 |u http://dx.doi.org/10.1007/978-3-319-01547-7 
912 |a ZDB-2-ENG 
929 |a COM 
942 |c EBK  |6 _ 
950 |a Engineering (Springer-11647) 
999 |a SKV  |c 27654  |d 27654