Seed dormancy QTL identification across a Sorghum bicolor segregating population

Pre-harvest sprouting [PHS] in Sorghum bicolor is one of the main constrains for its production in the central region of Argentina, as grain maturation often coincides with rainy or high environmental humidity conditions. The obtention of more dormant genotypes with higher PHS resistance has always...

Descripción completa

Detalles Bibliográficos
Otros Autores: Cantoro, Renata, Fernández, Luis G., Cervigni, Gerardo, Rodríguez, María V., Gieco, Jorge O., Paniego, Norma, Heinz, Ruth Amelia, Benech Arnold, Roberto Luis
Formato: Artículo
Lenguaje:Inglés
Materias:
QTL
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2016cantoro1.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08121cab a22012737a 4500
001 AR-BaUFA001019
003 AR-BaUFA
005 20230616150306.0
008 181208t2016 |||||o|||||00||||eng d
999 |c 47375  |d 47375 
022 |a 1573-5060 
024 |a 10.1007/s10681-016-1717-z 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Seed dormancy QTL identification across a Sorghum bicolor segregating population 
520 |a Pre-harvest sprouting [PHS] in Sorghum bicolor is one of the main constrains for its production in the central region of Argentina, as grain maturation often coincides with rainy or high environmental humidity conditions. The obtention of more dormant genotypes with higher PHS resistance has always been a desirable trait for breeders but the typical quantitative nature of seed dormancy makes its manipulation difficult through classical breeding. Dissecting this quantitative variability into quantitative trait loci [QTL] is a main concern especially in cereal species. In this work, a sorghum segregating population including 190 families was genotyped with microsatellite markers and the SbABI5 candidate gene. A genetic map encompassing 96 markers and a total length of 1331 cM was built. Seed dormancy was phenotyped in F3 and F4 panicles in two contrasting Argentinean environments [Castelar and Manfredi]. Six seed dormancy QTL for mature grains were identified [qGI-1, qGI-3, qGI-4, qGI-6, qGI-7 and qGI-9] with the aid of QTL Cartographer and QTLNetwork, three of them [qGI-3, qGI-7 and qGI- 9] being co-localised by both approaches. No epistasis was detected for the identified QTL but QTL-byenvironment interaction was significant for qGI-7 and qGI-9. Interestingly, seed dormancy candidate genes. 
653 0 |a PRE HARVEST SPROUNTING 
653 0 |a QTL 
653 0 |a SEED DORMANCY 
653 0 |a SORGHOM BICOLOR 
653 0 |a SSRS 
700 1 |9 36043  |a Cantoro, Renata 
700 1 |a Fernández, Luis G.  |9 72951 
700 1 |a Cervigni, Gerardo  |9 44907 
700 1 |a Rodríguez, María V.  |9 72952 
700 1 |a Gieco, Jorge O.  |9 50233 
700 1 |9 69315  |a Paniego, Norma 
700 1 |9 770  |a Heinz, Ruth Amelia 
700 1 |9 663  |a Benech Arnold, Roberto Luis 
773 |t Euphytica  |g vol.211, no.1 (2016), p.41-56, tbls., grafs. 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2016cantoro1.pdf  |i En reservorio  |q application/pdf  |f 2016cantoro1  |x MIGRADOS2018 
856 |u http://www.springer.com  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20170818 
900 |a 20170818 
900 |a 20170822 
900 |a 20171005 
900 |a 20171005 
900 |a 20171005 
900 |a N  
900 |a OK 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 10.1007/s10681-016-1717-z 
900 |a ^tSeed dormancy QTL identification across a Sorghum bicolor segregating population 
900 |a ^aCantoro^bR. 
900 |a ^aFernández^bL. G. 
900 |a ^aCervigni^bG. 
900 |a ^aRodríguez^bM. V. 
900 |a ^aGieco^bJ. O. 
900 |a ^aPaniego^bN. 
900 |a ^aHeinz^bR. A. 
900 |a ^aBenech Arnold^bR. L. 
900 |a ^aCantoro^bRenata 
900 |a ^aFernández^bLuis G. 
900 |a ^aCervigni^bGerardo 
900 |a ^aRodríguez^bMaría V. 
900 |a ^aGieco^bJorge O. 
900 |a ^aPaniego^bNorma 
900 |a ^aHeinz^bRuth Amelia 
900 |a ^aBenech Arnold^bRoberto Luis 
900 |a ^aCantoro, R. ^tIFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina e-mail: cantoro@agro.uba.ar  
900 |a ^aRodríguez, M. V.^tIFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina  
900 |a ^aBenech-Arnold, R. L.^tIFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, C1417DSE Buenos Aires, Argentina e-mail: cantoro@agro.uba.ar  
900 |a ^aFernández, L. G.^tInstituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria [INTA]-Castelar, B1686IGC Hurlingham, Buenos Aires, Argentina 
900 |a ^aPaniego, N.^tInstituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria [INTA]-Castelar, B1686IGC Hurlingham, Buenos Aires, Argentina 
900 |a ^aHeinz, R. A.^tInstituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria [INTA]-Castelar, B1686IGC Hurlingham, Buenos Aires, Argentina 
900 |a ^aCervigni, G. D. L.^tCentro de Estudios Fotosintéticos y Bioquímicos [CEFOBI], Facultad de Ciencias Bioquímicas y Farmaceúticas, Universidad Nacional de Rosario, S2002LRK Rosario, Santa Fé, Argentina 
900 |a ^aGieco, J. O.^tEstación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria [INTA], Manfredi, 5988, Córdoba, Argentina 
900 |a ^aPaniego, N.^tFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, EHA1428 Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aHeinz, R. A.^tFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, EHA1428 Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aCervigni, G. D. L.^tConsejo Nacional de Investigaciones Científicas y Técnicas [CONICET], C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aRodríguez, M. V.^tConsejo Nacional de Investigaciones Científicas y Técnicas [CONICET], C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aPaniego, N.^tConsejo Nacional de Investigaciones Científicas y Técnicas [CONICET], C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aHeinz, R. A.^tConsejo Nacional de Investigaciones Científicas y Técnicas [CONICET], C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^aBenech-Arnold, R. L.^tConsejo Nacional de Investigaciones Científicas y Técnicas [CONICET], C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 
900 |a ^tEuphytica^sintenational journal of plant breeding 
900 |a en 
900 |a p.41 
900 |a ^itbls., grafs. 
900 |a Vol.211, no.1 (2016) 
900 |a 56 
900 |a PRE HARVEST SPROUNTING 
900 |a QTL 
900 |a SEED DORMANCY 
900 |a SORGHOM BICOLOR 
900 |a SSRS 
900 |a Pre-harvest sprouting [PHS] in Sorghum bicolor is one of the main constrains for its production in the central region of Argentina, as grain maturation often coincides with rainy or high environmental humidity conditions. 
900 |a The obtention of more dormant genotypes with higher PHS resistance has always been a desirable trait for breeders but the typical quantitative nature of seed dormancy makes its manipulation difficult through classical breeding. 
900 |a Dissecting this quantitative variability into quantitative trait loci [QTL] is a main concern especially in cereal species. 
900 |a In this work, a sorghum segregating population including 190 families was genotyped with microsatellite markers and the SbABI5 candidate gene. 
900 |a A genetic map encompassing 96 markers and a total length of 1331 cM was built. 
900 |a Seed dormancy was phenotyped in F3 and F4 panicles in two contrasting Argentinean environments [Castelar and Manfredi]. 
900 |a Six seed dormancy QTL for mature grains were identified [qGI-1, qGI-3, qGI-4, qGI-6, qGI-7 and qGI-9] with the aid of QTL Cartographer and QTLNetwork, three of them [qGI-3, qGI-7 and qGI- 9] being co-localised by both approaches. 
900 |a No epistasis was detected for the identified QTL but QTL-byenvironment interaction was significant for qGI-7 and qGI-9. Interestingly, seed dormancy candidate genes. 
900 |a 2016 
900 |a AAG 
900 |a 2016cantoro1 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2016cantoro1.pdf 
900 |a http://www.springer.com 
900 |a BP 
900 |a BP 
900 |a GM 
900 |a BP 
900 |a BP 
900 |a BP 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc