A bayesian model for the analysis of transgenerational epigenetic variation

Epigenetics has become one of the major areas of biological research. However, the degree of phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative genetics perspective, the estimation of variance components is achieved by means of the information...

Descripción completa

Detalles Bibliográficos
Otros Autores: Varona, Luis, Munilla Leguizamón, Sebastián, Mouresan, Elena Flavia, González Rodríguez, Aldemar, Moreno, Carlos, Altarriba, Juan
Formato: Artículo
Lenguaje:Español
Materias:
BOS
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2015varona.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03042cab a22004697a 4500
001 AR-BaUFA000808
003 AR-BaUFA
005 20230914140539.0
008 181208t2015 |||||o|||||00||||spa d
999 |c 47204  |d 47204 
022 |a 2160-1836 
024 |a 10.1534/g3.115.016725 
040 |a AR-BaUFA 
245 1 0 |a A bayesian model for the analysis of transgenerational epigenetic variation 
520 |a Epigenetics has become one of the major areas of biological research. However, the degree of phenotypic variability that is explained by epigenetic processes still remains unclear. From a quantitative genetics perspective, the estimation of variance components is achieved by means of the information provided by the resemblance between relatives. In a previous study, this resemblance was described as a function of the epigenetic variance component and a reset coefficient that indicates the rate of dissipation of epigenetic marks across generations. Given these assumptions, we propose a Bayesian mixed model methodology that allows the estimation of epigenetic variance from a genealogical and phenotypic database. The methodology is based on the development of a T matrix of epigenetic relationships that depends on the reset coefficient. In addition, we present a simple procedure for the calculation of the inverse of this matrix [T-1] and a Gibbs sampler algorithm that obtains posterior estimates of all the unknowns in the model. The new procedure was used with two simulated data sets and with a beef cattle database. In the simulated populations, the results of the analysis provided marginal posterior distributions that included the population parameters in the regions of highest posterior density. In the case of the beef cattle dataset, the posterior estimate of transgenerational epigenetic variability was very low and a model comparison test indicated that a model that did not included it was the most plausible. 
653 0 |a TRANSGENERATIONAL EPIGENETIC VARIATION 
653 0 |a SIMULATION 
653 0 |a RESEMBLANCE BETWEEN RELATIVES 
653 0 |a QUANTITATIVE GENETICS 
653 0 |a LINEAR SYSTEM 
653 0 |a GENETIC VARIANCE 
653 0 |a GENETIC VARIABILITY 
653 0 |a GENETIC DATABASE 
653 0 |a GENETIC ASSOCIATION 
653 0 |a GENETIC ALGORITHM 
653 0 |a EPIGENETICS 
653 0 |a BOS 
653 0 |a BEEF CATTLE 
653 0 |a BAYESIAN ANALYSIS 
653 0 |a BAYES THEOREM 
700 1 |a Varona, Luis  |9 67267 
700 1 |9 13019  |a Munilla Leguizamón, Sebastián 
700 1 |9 70795  |a Mouresan, Elena Flavia 
700 1 |a González Rodríguez, Aldemar  |9 67266 
700 1 |a Moreno, Carlos  |9 70353 
700 1 |9 70314  |a Altarriba, Juan 
773 |t G3: Genes, Genomes, Genetics  |g vol.5, no.4 (2015), p.477-485 
856 |u http://ri.agro.uba.ar/files/download/articulo/2015varona.pdf  |i En internet  |q application/pdf  |f 2015varona  |x MIGRADOS2018 
856 |u http://www.g3journal.org/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG