Separating homeologs by phasing in the tetraploid wheat transcriptome

Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of m...

Descripción completa

Detalles Bibliográficos
Autor Corporativo: IWGS, Consortium
Otros Autores: Krasileva, Ksenia V., Buffalo, Vince, Bailey, Paul, Pearce, Stephen, Ayling, Sarah, Tabbita, Facundo, Soria, Marcelo Abel, Wang, Shichen, Akhunov, Eduard, Uauy, Cristobal, Dubcovsky, Jorge
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2013krasileva.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03819cab a22007217a 4500
001 AR-BaUFA000511
003 AR-BaUFA
005 20231123145204.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46945  |d 46945 
999 |d 46945 
999 |d 46945 
022 |a 1474-760X 
024 |a 10.1186/gb-2013-14-6-r66 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Separating homeologs by phasing in the tetraploid wheat transcriptome 
520 |a Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs. Results: A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs, including 96 percent of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a single contig by 22 percent relative to the best single k-mer size. Homoeologs are separated using a post-assembly pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads. Using a reference set of genes, we determine that 98.7 percent of SNPs analyzed are correctly separated by phasing. Conclusions: Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the wheat research community and for those interested in comparative genomic studies. 
650 |2 Agrovoc  |9 26 
653 0 |a GENE PREDICTION 
653 0 |a PHASING 
653 0 |a POLYPLOID 
653 0 |a PSEUDOGENES 
653 0 |a TRANSCRIPTOME ASSEMBLY 
653 0 |a TRITICUM TURGIDUM 
653 0 |a TRITICUM URARTU 
653 0 |a WHEAT 
653 0 |a CONTIG 
653 0 |a PROTEOME 
653 0 |a TRANSCRIPTOME 
653 0 |a CONTROLLED STUDY 
653 0 |a DIPLOIDY 
653 0 |a GENE SEQUENCE 
653 0 |a GENOME 
653 0 |a GENOMICS 
653 0 |a HETEROZYGOTE 
653 0 |a HOMEOLOG 
653 0 |a NONHUMAN 
653 0 |a OPEN READING FRAME 
653 0 |a PLANT GENOME 
653 0 |a SINGLE NUCLEOTIDE POLYMORPHISM 
653 0 |a TETRAPLOIDY 
653 0 |a TRITICUM AESTIVUM 
653 0 |a MULTIPLE K-MER ASSEMBLY 
653 0 |a PHASING 
653 0 |a COMPLEMENTARY DNA 
700 1 |a Krasileva, Ksenia V.  |9 72601 
700 1 |a Buffalo, Vince  |9 72602 
700 1 |a Bailey, Paul  |9 72603 
700 1 |a Pearce, Stephen  |9 72604 
700 1 |a Ayling, Sarah   |9 72605 
700 1 |a Tabbita, Facundo  |9 29189 
700 1 |9 49057  |a Soria, Marcelo Abel 
700 1 |a Wang, Shichen  |9 72606 
700 1 |a Akhunov, Eduard  |9 72608 
700 1 |a Uauy, Cristobal  |9 72609 
700 1 |a Dubcovsky, Jorge  |9 49058 
710 |a IWGS, Consortium  |9 72627 
773 |t Genome Biology  |g vol.14, no.6 (2013), p.1-19 
856 |u http://ri.agro.uba.ar/files/download/articulo/2013krasileva.pdf  |i En internet  |q application/pdf  |f 2013krasileva  |x MIGRADOS2018 
856 |u https://genomebiology.biomedcentral.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG