Detection of unrecorded environmental challenges in high - frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs

Background: Resilient animals can remain productive under different environmental conditions. Rearing in increas - ingly heterogeneous environmental conditions increases the need of selecting resilient animals. Detection of environmental challenges that affect an entire population can provide a uni...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: García Baccino, Carolina Andrea, Etancelin, Christel Marie, Tortereau, Flavie, Marcon, Didier, Weisbecker, Jean Louis, Legarra, Andres
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2021garciabaccino.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04329cab a22004097a 4500
001 20220420121209.0
003 AR-BaUFA
005 20220622122445.0
008 220420t2021 fr d||||o|||| 00| 0 eng d
999 |c 54581  |d 54581 
999 |d 54581 
999 |d 54581 
999 |d 54581 
999 |d 54581 
999 |d 54581 
022 |a 0999-193X (impreso) 
022 |a 1297-9686 (en linea) 
024 |a 10.1186/s12711-020-00595-x 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 |a Detection of unrecorded environmental challenges in high - frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs 
520 |a Background: Resilient animals can remain productive under different environmental conditions. Rearing in increas - ingly heterogeneous environmental conditions increases the need of selecting resilient animals. Detection of environmental challenges that affect an entire population can provide a unique opportunity to select animals that are more resilient to these events. The objective of this study was two - fold: (1) to present a simple and practical data - driven approach to estimate the probability that, at a given date, an unrecorded environmental challenge occurred; and (2) to evaluate the genetic determinism of resilience to such events. Methods: Our method consists of inferring the existence of highly variable days (indicator of environmental challenges) via mixture models applied to frequently recorded phenotypic measures and then using the inferred probabilities of the occurrence of an environmental challenge in a reaction norm model to evaluate the genetic determinism of resilience to these events. These probabilities are estimated for each day (or other time frame). We illustrate the method by using an ovine dataset with daily feed intake (DFI) records. Results: Using the proposed method, we estimated the probability of the occurrence of an unrecorded environmental challenge, which proved to be informative and useful for inclusion as a covariate in a reaction norm animal model. We estimated the breeding values for sensitivity of the genetic potential for DFI of animals to environmental challenges. The level and slope of the reaction norm were negatively correlated (-0.46±0.21). Conclusions: Our method is promising and appears to be viable to identify unrecorded events of environmental challenges, which is useful when selecting resilient animals and only productive data are available. It can be generalized to a wide variety of phenotypic records from different species and used with large datasets. The negative correlation between level and slope indicates that a hypothetical selection for increased DFI may not be optimal depending on the presence or absence of stress. We observed a reranking of individuals along the environmental gradient and low genetic correlations between extreme environmental conditions. These results confirm the existence of a GxE interaction and show that the best animals in one environmental condition are not the best in another one. 
650 |2 Agrovoc  |9 26 
653 |a ENVIRONMENTAL CHALLENGE 
653 |a GENETIC ANALYSIS 
653 |a METHODS 
700 1 |a García Baccino, Carolina Andrea  |u Universidad de Buenos Aires. Facultad de Agronomía. Buenos Aires, Argentina.  |u Université de Toulouse. GenPhySE. INRAE, ENVT. Tolosan, France.  |9 33814 
700 1 |a Etancelin, Christel Marie  |u Université de Toulouse. GenPhySE. INRAE, ENVT. Tolosan, France.  |9 73558 
700 1 |a Tortereau, Flavie  |u Université de Toulouse. GenPhySE. INRAE, ENVT. Tolosan, France.  |9 73559 
700 1 |a Marcon, Didier  |u Unité Expérimentale INRAE, Domaine de La Sapinière, INRAE. France.  |9 73560 
700 1 |a Weisbecker, Jean Louis  |u Université de Toulouse. GenPhySE. INRAE, ENVT. Tolosan, France.  |9 73561 
700 1 |a Legarra, Andres  |u Université de Toulouse. GenPhySE. INRAE, ENVT. Tolosan, France.  |9 67204 
773 0 |t Genetics selection evolution  |w (AR-BaUFA)SECS000092  |g Vol.53, no.4 (2021), 14 p., grafs. 
856 |i en internet  |q application/pdf  |x ARTI202204  |f 2021garciabaccino  |u http://ri.agro.uba.ar/files/download/articulo/2021garciabaccino.pdf 
856 |z LINK AL EDITOR  |u http://www.biomedcentral.com/ 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG