Network analysis of pig movements in Argentina identification of key farms in the spread of infectious diseases and their biosecurity levels

This study uses network analysis to evaluate how swine movements in Argentina could contribute to disease spread. Movement data for the 2014–2017 period were obtained from Argentina's online livestock traceability registry and categorized as follows: animals of high genetic value sent to other...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Alarcón, Laura V., Cipriotti, Pablo Ariel, Monterubbianessi, Mariela, Perfumo, Carlos, Mateu Tortosa, Enric, Allepuz, Alberto
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2019alarcon1.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04648nab a22003977a 4500
001 20210624201058.0
003 AR-BaUFA
008 210517t2019 xxud||||o|||| 00| 0 eng d
999 |c 54214  |d 54214 
999 |d 54214 
999 |d 54214 
999 |d 54214 
999 |d 54214 
999 |d 54214 
022 |a 1865-1682 
024 |a 10.1111/tbed.13441 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Network analysis of pig movements in Argentina  |b identification of key farms in the spread of infectious diseases and their biosecurity levels 
520 |a This study uses network analysis to evaluate how swine movements in Argentina could contribute to disease spread. Movement data for the 2014–2017 period were obtained from Argentina's online livestock traceability registry and categorized as follows: animals of high genetic value sent to other farms, animals to or from markets, animals sent to finisher operations and slaughterhouse. A network analysis was carried out considering the first three movement types. First, descriptive, centrality and cohesion measures were calculated for each movement type and year. Next, to determine whether networks had a small-world topology, these were compared with the results from random Erdös–Rényi network simulations. Then, the basic reproductive number (R0) of the genetic network, the group of farms with higher potential for disease spread standing at the top of the production chain, was calculated to identify farms acting as super-spreaders. Finally, their external biosecurity scores were evaluated. The genetic network in Argentina presented a scale-free and small-world topology. Thus, we estimate that disease spread would be fast, preferably to highly connected nodes and with little chances of being contained. Throughout the study, 31 farms were identified as super-spreaders in the genetic network for all years, while other 55 were super-spreaders at least once, from an average of 1,613 farms per year. Interestingly, removal of less than 5% of higher degree and betweenness farms resulted in less than 90% reduction of R0 indicating that few farms have a key role in disease spread. When biosecurity scores of the most relevant super-spreaders were examined, it was evident that many were at risk of introducing and disseminating new pathogens across the whole of Argentina's pig production network. These results highlight the usefulness of establishing targeted surveillance and intervention programmes, emphasizing the need for better biosecurity scores in Argentinean swine production units, especially in super-spreader farms. 
650 |2 Agrovoc  |9 26 
653 0 |a BASIC REPRODUCTIVE NUMBER 
653 0 |a BIOSECURITY 
653 0 |a NETWORK ANALYSIS 
653 0 |a PIG MOVEMENTS 
700 1 |a Alarcón, Laura V.  |u Universitat Autònoma de Barcelona. Facultat de Veterinària. Departament de Sanitat i Anatomia Animals. Barcelona, Spain.  |u Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. La Plata, Buenos Aires, Argentina.  |9 72760 
700 1 |9 20940  |a Cipriotti, Pablo Ariel  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Monterubbianessi, Mariela  |u Argentina. Ministerio de Producción y Trabajo. Servicio Nacional de Sanidad y Calidad Agroalimentaria (SENASA). Buenos Aires, Argentina.  |9 72761 
700 1 |a Perfumo, Carlos  |u Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. La Plata, Buenos Aires, Argentina.  |9 72762 
700 1 |a Mateu Tortosa, Enric  |u Universitat Autònoma de Barcelona. Facultat de Veterinària. Departament de Sanitat i Anatomia Animals. Barcelona, Spain.  |u Universitat Autònoma de Barcelona. Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB). Barcelona, Spain.  |9 14322 
700 1 |a Allepuz, Alberto  |u Universitat Autònoma de Barcelona. Facultat de Veterinària. Departament de Sanitat i Anatomia Animals. Barcelona, Spain.  |u Universitat Autònoma de Barcelona. Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB). Barcelona, Spain.  |9 72763 
773 |t Transboundary and emerging diseases  |g Vol.67, no.3 (2020), p.1152–1163, tbls., grafs. 
856 |f 2019alarcon1  |u http://ri.agro.uba.ar/files/intranet/articulo/2019alarcon1.pdf  |i En reservorio  |q application/pdf  |x ARTI202103 
856 |u http://www.wiley.com/  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG