The use of leaf surface contact cues during oviposition explains field preferences in the willow sawfly Nematus oligospilus author correction

After an insect herbivore has reached its host plant, contact cues from the leaf surface often determine host acceptance. We studied contact cues during oviposition behavior of a willow pest, the sawfly Nematus oligospilus (Hymenoptera: Tenthredinidae), a specialist feeder on Salix (Salicaceae) tree...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Fernández, Patricia Carina, Braccini, Celina L., Dávila, Camila, Barrozo, Romina B., Coll Aráoz, María Victoria, Cerrillo, Teresa T., Gershenzon, Jonathan, Reichelt, Michael, Zavala, Jorge Alberto
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2020fernandez.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05055nab a22004337a 4500
001 20200528160636.0
003 AR-BaUFA
005 20220811142016.0
008 200528t2020 xxu|||||o|||| 00| | eng d
999 |c 47991  |d 47991 
999 |d 47991 
999 |d 47991 
999 |d 47991 
999 |d 47991 
999 |d 47991 
022 |a 2045-2322 
024 |a 10.1038/s41598-019-41318-7 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a The use of leaf surface contact cues during oviposition explains field preferences in the willow sawfly Nematus oligospilus  |b author correction 
520 |a After an insect herbivore has reached its host plant, contact cues from the leaf surface often determine host acceptance. We studied contact cues during oviposition behavior of a willow pest, the sawfly Nematus oligospilus (Hymenoptera: Tenthredinidae), a specialist feeder on Salix (Salicaceae) trees, and how it determines oviposition preference in lab and field conditions. We described the sequence of behaviors that lead to egg laying on the most and least preferred willow species. Then we studied the morphology of chemosensory structures present on the female antenna, cerci and ovipositor. Since phenolic glycosides (PGs) are the main secondary metabolites present in Salicaceae species, we investigated their role in host acceptance. We quantified these compounds in different willow species and correlated PG content with oviposition preference under lab and natural field conditions. We demonstrated a major role for contact cues in triggering N. oligospilus egg laying on the leaf surface of preferred willow genotypes. Firstly cues are sensed by antennae, determining to leave or stay on the leaf. After that, sensing is performed by abdominal cerci, which finally triggers egg laying. The lack of PGs in non-preferred species and the significant correlation observed between PGs, natural damage and oviposition preference suggest a role for these compounds in host selection. Our study suggests that in specialist feeders, secondary compounds normally acting as defenses can actually act as a susceptibility factor by triggering specific insect behavior for oviposition. These defensive compounds could be selected against to increase resistance. 
653 |a LEAF SURFACE 
653 |a INSECT HERBIVORE 
653 |a OVIPOSITION 
653 |a NEMATUS OLIGOSPILUS 
700 1 |9 67437  |a Fernández, Patricia Carina  |u CONICET. Buenos Aires, Argentina.  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná (EEA Delta del Paraná). Campana, Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedras de Química de Biomoléculas y Bioquímica. Buenos Aires, Argentina. 
700 1 |a Braccini, Celina L.  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos. Hurlingham, Buenos Aires, Argentina.  |9 68420 
700 1 |a Dávila, Camila  |u CONICET. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedras de Química de Biomoléculas y Bioquímica. Buenos Aires, Argentina.  |9 71456 
700 1 |a Barrozo, Romina B.  |u Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento Biodiversidad y Biología Experimental. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires, Argentina.  |u CONICET - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento Biodiversidad y Biología Experimental. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA). Buenos Aires, Argentina.  |9 71457 
700 1 |a Coll Aráoz, María Victoria  |u PROIMI-CONICET Biotecnología. Tucumán, Argentina.  |u Universidad de Tucumán.Facultad de Ciencias Naturales e IML, UNT. San Miguel de Tucumán, Argentina.  |9 68421 
700 1 |a Cerrillo, Teresa T.  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Delta del Paraná (EEA Delta del Paraná). Campana, Buenos Aires, Argentina.  |9 25956 
700 1 |a Gershenzon, Jonathan  |u Max Planck Institute for Chemical Ecology. Jena, Germany.  |9 46780 
700 1 |a Reichelt, Michael  |u Max Planck Institute for Chemical Ecology. Jena, Germany.  |9 68147 
700 1 |9 7916  |a Zavala, Jorge Alberto  |u CONICET. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedras de Química de Biomoléculas y Bioquímica. Buenos Aires, Argentina. 
773 0 |t Scientific reports  |g vol.10, (2020), art.2788, 1 p. 
856 |f 2020fernandez  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2020fernandez.pdf  |x ARTI202003 
856 |z LINK AL EDITOR  |u https://www.nature.com 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG