Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands

Grazing is directly related to land degradation and desertification in global drylands. Grazing impacts on vascular plants, reasonably well-known, depend on its intensity and are modulated by local aridity conditions. However, we do not know how the interplay of grazing intensity and aridity affect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Velasco Ayuso, Sergio, Oñatibia, Gastón R., Maestre, Fernando Tomás, Yahdjian, María Laura
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2020velascoayuso.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04667nab a22003617a 4500
001 20200526144153.0
003 AR-BaUFA
005 20220926163223.0
008 200526t2020 xxud||||o|||| 00| | eng d
999 |c 47988  |d 47988 
999 |d 47988 
999 |d 47988 
999 |d 47988 
022 |a 1099-145X 
024 |a 10.1002/ldr.3465 
040 |a AR-BaUFA 
245 1 0 |a Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands 
520 |a Grazing is directly related to land degradation and desertification in global drylands. Grazing impacts on vascular plants, reasonably well-known, depend on its intensity and are modulated by local aridity conditions. However, we do not know how the interplay of grazing intensity and aridity affect biocrusts, topsoil assemblages dominated by cyanobacteria, lichens, and mosses that provide key ecosystem services in drylands. Here, we determined how grazing affects biomass, total cover, and richness of biocrust structural types across a regional aridity gradient in the Patagonian steppe. On average, grazing by sheep reduced biocrust biomass, total cover and richness of structural types by 55, 90, and 59%, respectively. In general, high grazing pressures had a larger impact on biocrusts than moderate or light grazing pressures. For example, biocrust cover was reduced by 85, 89, and 98% by light, moderate, and high grazing pressures, respectively. Although a slightly different response to grazing was observed under low aridity conditions, these more benign climatic conditions did not compensate for the negative effects of trampling by domestic animals on biocrusts. Nonetheless, estimated biocrust recovery rates under medium aridity conditions were faster than previously thought: it took 24, 18, and 58 years to double biocrust biomass, total cover, and richness of structural types. Sheep cannot be just removed in Patagonian rangelands because the production of meat and wool represents the main local economic activity. But landowners must consider our results to protect the ecosystem functions and services provided by biocrusts for future generations to come. 
653 |a ARIDITY 
653 |a BIOCRUSTS 
653 |a GRAZING INTENSITY 
653 |a PATAGONIAN STEPPE 
653 |a RECOVERY RATES 
700 1 |9 71214  |a Velasco Ayuso, Sergio  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 33451  |a Oñatibia, Gastón R.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Maestre, Fernando Tomás  |u Universidad Rey Juan Carlos. Escuela Superior de Ciencias Experimentales y Tecnología. Departamento de Biología y Geología, Física y Química Inorgánica. Móstoles, Spain.  |u Universidad de Alicante. Departamento de Ecología and Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’. San Vicente del Raspeig, Spain.  |9 59155 
700 1 |9 16176  |a Yahdjian, María Laura  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Ecología. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
773 0 |t Land degradation and development  |g vol.31, no.4 (2020), p.488-499, grafs. 
856 |f 2020velascoayuso  |q application/pdf  |i en reservorio  |u http://ri.agro.uba.ar/files/intranet/articulo/2020velascoayuso.pdf  |x ARTI202003 
856 |z LINK AL EDITOR  |u https://www.wiley.com/ 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG