Community ‐ level natural selection modes a quadratic framework to link multiple functional traits with competitive ability

1. Research linking functional traits to competitive ability of coexisting species has largely relied on rectilinear correlations, yielding inconsistent results. Based on concepts borrowed from natural selection theory, we propose that trait–competition relationships can generally correspond to thre...

Descripción completa

Detalles Bibliográficos
Otros Autores: Rolhauser, Andrés Guillermo, Nordenstahl, Marisa, Aguiar, Martín Roberto, Pucheta, Eduardo Raúl
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2019rolhauser.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05206cab a22004217a 4500
001 20200401115600.0
003 AR-BaUFA
005 20220927091310.0
008 200401t2019 xxkd||||o|||| 00| | eng d
999 |c 47910  |d 47910 
999 |d 47910 
999 |d 47910 
999 |d 47910 
022 |a 0022-0477 
024 |a 10.1111/1365-2745.13094 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Community ‐ level natural selection modes  |b a quadratic framework to link multiple functional traits with competitive ability 
520 |a 1. Research linking functional traits to competitive ability of coexisting species has largely relied on rectilinear correlations, yielding inconsistent results. Based on concepts borrowed from natural selection theory, we propose that trait–competition relationships can generally correspond to three univariate selection modes: directional (a rectilinear relationship), stabilising (an n‐shaped relationship), and disruptive (a u‐shaped relationship). Moreover, correlational selection occurs when two traits interact in determining competitive ability and lead to an optimum trait combination (i.e., a bivariate nonlinear selection mode). 2. We tested our ideas using two independent datasets, each one characterising a group of species according to (a) their competitive effect on a target species in a pot experiment and (b) species‐level values of well‐known functional traits extracted from existing databases. The first dataset comprised 10 annual plant species frequent in a summer‐rainfall desert in Argentina, while the second consisted of 37 herbaceous species from cool temperate vegetation types in Canada. Both experiments had a replacement design where the identity of neighbours was manipulated holding total plant density in pots constant. We modelled the competitive ability of neighbours (i.e., the log inverse of target plant biomass) as a function of traits using normal multiple regression. 3. Leaf dry matter content (LDMC) was consistently subjected to negative directional selection in both experiments as well as to stabilising selection among temperate species. Leaf size was subjected to stabilising selection among desert species while among temperate species, leaf size underwent correlational selection in combination with specific leaf area (SLA): selection on SLA was negative directional for large‐leaved species, while it was slightly positive for small‐leaved species. 4. Synthesis. Multiple quadratic regression adds functional flexibility to trait‐based community ecology while providing a standardised basis for comparison among traits and environments. Our analyses of two datasets from contrasting environmental conditions indicate (a) that leaf dry matter content can capture an important component of plant competitive ability not accounted for by widely used competitive traits, such as specific leaf area, leaf size, and plant height and (b) that optimum relationships (either univariate or bivariate) between competitive ability and plant traits may be more common than previously realised. 
653 |a COMMUNITY ASSEMBLY 
653 |a COMPETITION EXPERIMENT 
653 |a CORRELATIONAL SELECTION 
653 |a LEAF DRY MATTER CONTENT 
653 |a LEAF SIZE 
653 |a PHENOTYPIC SELECTION 
653 |a PLANT–PLANT INTERACTIONS 
653 |a QUADRATIC REGRESSION 
653 |a SPECIFIC LEAF AREA 
653 |a STABILISING SELECTION 
700 1 |9 12512  |a Rolhauser, Andrés Guillermo  |u Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Biología. San Juan, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Nordenstahl, Marisa  |u Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Biología. San Juan, Argentina.  |9 18129 
700 1 |9 12939  |a Aguiar, Martín Roberto  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 58204  |a Pucheta, Eduardo Raúl  |u Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Biología. San Juan, Argentina. 
773 0 |t Journal of ecology  |w SECS000112  |g vol.107, no.3 (2019), p.1457-1468, tbls., grafs. 
856 |f 2019rolhauser  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2019rolhauser.pdf  |x ARTI202003 
856 |z LINK AL EDITOR  |u https://www.wiley.com/ 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG