Combined effects of grazing management and climate on semi ‐ arid steppes hysteresis dynamics prevent recovery of degraded rangelands

1. Livestock grazing has degraded many arid and semi‐arid rangelands around the world, and the drier climate predicted by climate change scenarios may amplify these effects and even lead to catastrophic vegetation shifts. 2. We assess the long‐term effects (1900–2100) of grazing and rainfall on vari...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Cipriotti, Pablo Ariel, Aguiar, Martín Roberto, Wiegand, Thorsten, Paruelo, José María
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2019cipriotti1.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05084nab a22003977a 4500
001 20191112114215.0
003 AR-BaUFA
005 20221101134838.0
008 191112t2019 xxud||||o|||| 00| | eng d
999 |c 47726  |d 47726 
999 |d 47726 
999 |d 47726 
999 |d 47726 
022 |a 0021-8901 
024 |a 10.1111/1365-2664.13471 
040 |a AR-BaUFA 
245 1 0 |a Combined effects of grazing management and climate on semi ‐ arid steppes  |b hysteresis dynamics prevent recovery of degraded rangelands 
520 |a 1. Livestock grazing has degraded many arid and semi‐arid rangelands around the world, and the drier climate predicted by climate change scenarios may amplify these effects and even lead to catastrophic vegetation shifts. 2. We assess the long‐term effects (1900–2100) of grazing and rainfall on various aspects of vegetation structure including the grass‐shrub balance, the maintenance of spatial vegetation patterns, and the decline or recovery of palatable grasses (e.g. Poa ligularis) on a cover and/or density basis. We used the eco hydrological and individual‐based simulation model DINVEG for this purpose, which describes the spatiotemporal dynamics of Patagonian grass‐shrub steppes based on six decades of field research (1955–2018). 3. Rainfall and grazing affected the simulated vegetation structure in different ways. Total plant cover was mostly influenced by rainfall, but the cover of palatable grasses was mostly influenced by stocking rate. Dry conditions and low stocking rates (122 mm/year and smaller than 0.2 sheep/ha) favoured grasses over shrubs, whereas shrub encroachment occurred only in the high rainfall scenario combined with high stocking rates (181 mm/year and greater than 0.2 sheep/ha). 4. High stocking rates and/or drier conditions caused only gradual shifts in spatial vegetation patterns, but maintained the observed positive association for grasses around shrubs. In contrast, shrub encroachment was associated with repulsion between grasses and shrubs and the formation of shrub clusters into a matrix of scattered less palatable grasses. 5. Plant compositional changes occurred through grass species replacement (e.g. P. ligularis is replaced by Pappostipa humilis) and the associated hysteresis effect of palatable grass species: model simulations suggest that 2–3 decades of heavy and year long continuous grazing can drive palatable grasses to close to extinction, where as natural recovery of degraded steppes may take 100 years or longer. 
653 |a DESERTIFICATION 
653 |a ECOSYSTEM RESTORATION 
653 |a GRASS‐SHRUB COEXISTENCE 
653 |a HYSTERESIS 
653 |a SHEEP GRAZING 
653 |a SIMULATION MODELLING 
653 |a STOCKING RATE 
653 |a VEGETATION MOSAICS 
700 1 |9 20940  |a Cipriotti, Pablo Ariel  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 12939  |a Aguiar, Martín Roberto  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Buenos Aires, Argentina. 
700 1 |9 38577  |a Wiegand, Thorsten  |u Department of Ecological Modelling (ÖSA). Helmholtz Centre for Environmental Research GmbH – UFZ. Leipzig, Germany.  |u German Centre for Integrative Biodiversity Research (iDiv). Halle‐Jena‐Leipzig, Leipzig, Germany. 
700 1 |9 788  |a Paruelo, José María  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Laboratorio de Análisis Regional y Teledetección (LART). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Laboratorio de Análisis Regional y Teledetección (LART). Buenos Aires, Argentina. 
773 0 |t Journal of applied ecology  |w SECS000109  |g vol.56, no.9 (2019), p.2155-2165, grafs. 
856 |f 2019cipriotti1  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2019cipriotti1.pdf  |x ARTI201911 
856 |z LINK AL EDITOR  |u https://www.wiley.com 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG