The ecology of soil carbon pools, vulnerabilities, and biotic and abiotic controls

Soil organic matter (SOM) anchors global terrestrial productivity and food and fiber supply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbes, returning CO2, a greenhouse gas, to the atmosphere. Unfortun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Jackson, Robert B., Lajtha, Kate, Crow, Susan E., Hugelius, Gustaf, Kramer, Marc G., Piñeiro, Gervasio
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2018jackson.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04256nab a22003977a 4500
001 20190701140549.0
003 AR-BaUFA
005 20220808123311.0
008 190701t2017 xxuabd||o|||| 00| | eng d
999 |c 47440  |d 47440 
999 |d 47440 
022 |a 1543-592X 
024 |a 10.1146/annurev-ecolsys-112414- 054234 
040 |a AR-BaUFA 
245 1 0 |a The ecology of soil carbon  |b pools, vulnerabilities, and biotic and abiotic controls 
520 |a Soil organic matter (SOM) anchors global terrestrial productivity and food and fiber supply. SOM retains water and soil nutrients and stores more global carbon than do plants and the atmosphere combined. SOM is also decomposed by microbes, returning CO2, a greenhouse gas, to the atmosphere. Unfortunately, soil carbon stocks have been widely lost or degraded through land use changes and unsustainable forest and agricultural practices To understand its structure and function and to maintain and restore SOM, we need a better appreciation of soil organic carbon (SOC) saturation capacity and the retention of above- and belowground inputs in SOM. Our analysis suggests root inputs are approximately five times more likely than an equivalentmass of aboveground litter to be stabilized as SOM.Microbes, particularly fungi and bacteria, and soil faunal food webs strongly influence SOM decomposition at shallower depths, whereas mineral associations drive stabilization at depths greater than ∼30 cm. Global uncertainties in the amounts and locations of SOM include the extent of wetland, peatland, and permafrost systems and factors that constrain soil depths, such as shallow bedrock. In consideration of these uncertainties, we estimate global SOC stocks at depths of 2 and 3 m to be between 2,270 and 2,770 Pg, respectively, but could be as much as 700 Pg smaller. Sedimentary deposits deeper than 3 m likely contain greater than 500 Pg of additional SOC. Soils hold the largest biogeochemically active terrestrial carbon pool on Earth and are critical for stabilizing atmospheric CO2 concentrations. Nonetheless, global pressures on soils continue from changes in land management, including the need for increasing bioenergy and food production. 
653 |a GLOBAL CARBON STOCKS 
653 |a LITTER AND ROOT INPUTS 
653 |a SOIL CARBON MITIGATION AND VULNERABILITIES 
653 |a SOIL FAUNA AND FOOD WEB ECOLOGY 
653 |a SOIL ORGANIC CARBON 
653 |a SOIL FAUNA AND FOOD WEB ECOLOGY 
653 |a SOIL ORGANIC NITROGEN 
653 |a SOIL ORGANIC MATTER 
700 1 |9 67510  |a Jackson, Robert B.  |u Stanford University. Department of Earth System Science. Stanford, California.  |u Stanford University. Woods Institute for the Environment. Stanford, California.  |u Stanford University. Precourt Institute for Energy. Stanford, California. 
700 1 |a Lajtha, Kate  |u Oregon State University. Department of Crop and Soil Sciences. Corvallis, Oregon.  |9 68892 
700 1 |a Crow, Susan E.  |u University of Hawai’i at Manoa. Department of Natural Resources and Environmental Management. Honolulu, Hawai’i.  |9 68893 
700 1 |a Hugelius, Gustaf  |u Stanford University. Department of Earth System Science. Stanford, California.  |u Stockholm University. Department of Physical Geography. Stockholm, Sweden.  |9 68894 
700 1 |a Kramer, Marc G.  |u Washington State University Vancouver. School of the Environment. Vancouver, Washington.  |9 68896 
700 1 |9 22554  |a Piñeiro, Gervasio  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de la República. Facultad de Agronomía. Montevideo, Uruguay. 
773 |t Annual Review of Ecology, Evolution, and Systematics  |g vol.48 (2017), p.419–445, grafs., tbls., il., mapas  |w SECS001255 
856 |f 2018jackson  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2018jackson.pdf  |x ARTI201908 
856 |z LINK AL EDITOR  |u https://www.annualreviews.org 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG