Maize nitrogen use efficiency QTL mapping in a U.S. Dent x Argentine - Caribbean Flint RILs population

This study was aimed to identify quantitative trait loci (QTL) for nitrogen use efficiency (NUE) and related traits in a maize population derived from a cross between two lines with different genetic background (B100 and LP2). Recombinant inbred lines (181) from this population were evaluated under...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Mandolino, Cecilia I., D'Andrea, Karina Elizabeth, Olmos, Sofía, Otegui, María Elena, Eyhérabide, Guillermo Hugo
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2018mandolino.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04642nab a22003617a 4500
001 20190628151042.0
003 AR-BaUFA
005 20220914100318.0
008 190628t2018 it |||||o|||| 00| 0 eng d
999 |c 47427  |d 47427 
999 |d 47427 
999 |d 47427 
999 |d 47427 
999 |d 47427 
022 |a 2279-8013 
040 |a AR-BaUFA 
245 1 0 |a Maize nitrogen use efficiency  |b QTL mapping in a U.S. Dent x Argentine - Caribbean Flint RILs population 
520 |a This study was aimed to identify quantitative trait loci (QTL) for nitrogen use efficiency (NUE) and related traits in a maize population derived from a cross between two lines with different genetic background (B100 and LP2). Recombinant inbred lines (181) from this population were evaluated under field conditions during two growing seasons, and significant (P minor sign 0.01) phenotypic and genotypic variability was detected for most evaluated traits. Two different mapping methods were applied for detecting QTLs. Firstly, a trait by trait approach was performed on across environments, and 19 QTLs were identified. Secondly, a multi - trait multi - environment analysis detected seven joint QTLs. Almost all joint QTLs had inconsistent additive effects from one environment to another, which would reflect presence of QTL × Environment interaction. Most joint QTLs co - localized with QTLs detected by individual mapping. We detected consistent additive effects for grain yield per plant and NUE, as well as for biomass and nitrogen harvest index in some joint QTLs, especially QTL-1 and QTL-6. These QTLs had positive and stable effects across environments, and presence of some genes within these QTL intervals could be relevant for selecting for both NUE and grain yield simultaneously. Up today, this is a first report on the co - localization of QTLs for enhanced allocation of biomass allocation to grains with NUE, and NUE candidate gene identification. Fine mapping of these regions could allow to detect additional markers more closely linked to these QTLs that could be used for marker assisted selection for NUE. 
653 |a CANDIDATE GENES 
653 |a MAIZE 
653 |a NITROGEN USE EFFICIENCY (NUE) 
653 |a QUANITATIVE TRAIT LOCI (QTL) 
700 1 |a Mandolino, Cecilia I.  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Buenos Aires, Argentina.  |u CONICET - Centro de investigaciones y transferencia del noroeste de la provincia de Buenos Aires (CIT NOBA). Pergamino, Buenos Aires, Argentina.  |9 67856 
700 1 |9 11924  |a D'Andrea, Karina Elizabeth  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Olmos, Sofía  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Buenos Aires, Argentina.  |u CONICET - Centro de investigaciones y transferencia del noroeste de la provincia de Buenos Aires (CIT NOBA). Pergamino, Buenos Aires, Argentina.  |9 67857 
700 1 |9 5930  |a Otegui, María Elena  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 9598  |a Eyhérabide, Guillermo Hugo  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Buenos Aires, Argentina.  |u CONICET - Centro de investigaciones y transferencia del noroeste de la provincia de Buenos Aires (CIT NOBA). Pergamino, Buenos Aires, Argentina. 
773 0 |t Maydica  |w SECS000302  |g vol.63, no.1 (2018), m2, 17 p., tbls. 
856 |f 2018mandolino  |i en Internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2018mandolino.pdf  |x ARTI201908 
856 |u https://journals-crea.4science.it  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG