Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering

Small diameter tissue - engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and-or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Irastorza, Ramiro M., Drouin, Bernard, Blangino, Eugenia, Mantovani, Diego
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2015irastorza.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 02537cab a22003257a 4500
001 AR-BaUFA000918
003 AR-BaUFA
005 20210830154551.0
008 181208t2015 |||||o|||||00||||eng d
999 |c 47274  |d 47274 
999 |d 47274 
999 |d 47274 
022 |a 1537-744X 
024 |a 10.1155/2015/859416 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering 
520 |a Small diameter tissue - engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and-or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control systemtheory. Second,models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed:Mooney - Rivlin inspired and Hammerstein models. Theresults suggest that Mooney - Rivlin andHammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds [with best fitting parameters 58.3 per cent and .75.8 per cent, resp.]. When Akaike criterion is used, the best is the Mooney - Rivlin inspired model. 
650 |2 Agrovoc  |9 26 
653 0 |a MATHEMATICAL MODELING 
653 0 |a VASCULAR TISSUE ENGINEERING 
700 1 |a Irastorza, Ramiro M.  |9 70320 
700 1 |a Drouin, Bernard  |9 70319 
700 1 |a Blangino, Eugenia  |9 70321 
700 1 |a Mantovani, Diego  |9 70322 
773 |t The Scientific World Journal  |g vol.2015, article ID 859416, p.1-9, grafs., tbls. 
856 |u http://ri.agro.uba.ar/files/download/articulo/2015irastorza.pdf  |i En internet  |q application/pdf  |f 2015irastorza  |x MIGRADOS2018 
856 |u http://www.hindawi.com/journals/tswj/  |x MIGRADOS2018  |z LINK AL EDITOR 
942 0 0 |c ARTICULO 
942 0 0 |c ENLINEA 
976 |a AAG