Gene discovery and molecular marker development, based on high - throughput transcript sequencing of Paspalum dilatatum poir

Background: Paspalum dilatatum Poir. [common name dallisgrass] is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is pred...

Descripción completa

Detalles Bibliográficos
Otros Autores: Giordano, Andrea, Cogan, Noel O. I., Kaur, Sukhjiwan, Drayton, Michelle, Mouradov, Aidyn, Panter, Stephen, Schrauf, Gustavo Enrique, Mason, John G., Spangenberg, G. C.
Formato: Artículo
Lenguaje:Español
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2014giordano.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 12113cab a22020417a 4500
001 AR-BaUFA000634
003 AR-BaUFA
005 20220208135453.0
008 181208t2014 |||||o|||||00||||spa d
999 |c 47030  |d 47030 
022 |a 1932-6203 
024 |a 10.1371/journal.pone.0085050 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Gene discovery and molecular marker development, based on high - throughput transcript sequencing of Paspalum dilatatum poir 
520 |a Background: Paspalum dilatatum Poir. [common name dallisgrass] is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. Results: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues [stems, roots, leaves and inflorescences] at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet [Setaria italica] genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats [SSRs]. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34 percent being polymorphic between sexual and apomictic biotypes. Conclusions: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression studies. Association of gene function with agronomic traits will significantly enable molecular breeding and advance germplasm enhancement. 
653 0 |a MOLECULAR MARKER 
653 0 |a PLANT RNA 
653 0 |a BRACHYPODIUM 
653 0 |a CATALYSIS 
653 0 |a CELL COMPONENT 
653 0 |a ENZYME ACTIVITY 
653 0 |a FOXTAIL MILLET 
653 0 |a GENE ONTOLOGY 
653 0 |a GENE SEQUENCE 
653 0 |a GENETIC RESOURCE 
653 0 |a GENETIC VARIABILITY 
653 0 |a HIGH THROUGHPUT SEQUENCING 
653 0 |a MOLECULAR GENETICS 
653 0 |a NONHUMAN 
653 0 |a NUCLEOTIDE BINDING SITE 
653 0 |a PASPALUM DILATATUM 
653 0 |a PLANT GENOME 
653 0 |a PROTEING BINDING 
653 0 |a RICE 
653 0 |a SIGNAL TRANSDUCTION 
653 0 |a SORGHUM 
653 0 |a CONTIG MAPPING 
653 0 |a EXPRESSED SEQUENCE TAGS 
653 0 |a GENE ONTOLOGY 
653 0 |a GENETIC ASSOCIATION STUDIES 
653 0 |a GENETIC MARKERS 
653 0 |a GENOME, PLANT 
653 0 |a HIGH-THROUGHPUT NUCLEOTIDE SEQUENCING 
653 0 |a MICROSATELLITE REPEATS 
653 0 |a MOLECULAR SEQUENCE ANNOTATION 
653 0 |a NUCLEOTIDE MOTIFS 
653 0 |a PASPALUM 
653 0 |a POLYMORPHISM, GENETIC 
653 0 |a REPRODUCCIBILITY OF RESULTS 
653 0 |a RNA, MESSENGER 
700 1 |a Giordano, Andrea  |9 72795 
700 1 |a Cogan, Noel O. I.  |9 72796 
700 1 |a Kaur, Sukhjiwan  |9 72797 
700 1 |a Drayton, Michelle  |9 72798 
700 1 |a Mouradov, Aidyn  |9 72799 
700 1 |a Panter, Stephen  |9 72800 
700 1 |a Schrauf, Gustavo Enrique  |9 37297 
700 1 |a Mason, John G.  |9 72801 
700 1 |a Spangenberg, G. C.  |9 72802 
773 |t Plos One  |g vol. 9, no.2 (2014), p.1-10 
856 |u http://ri.agro.uba.ar/files/download/articulo/2014giordano.pdf  |i En internet  |q application/pdf  |f 2014giordano  |x MIGRADOS2018 
856 |u http://www.plosone.org/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20150908 
900 |a N 
900 |a SCOPUS 
900 |a OA 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 19326203 
900 |a 10.1371/journal.pone.0085050 
900 |a ^tGene discovery and molecular marker development, based on high-throughput transcript sequencing of Paspalum dilatatum Poir 
900 |a ^aGiordano^bA. 
900 |a ^aCogan^bN.O.I. 
900 |a ^aKaur^bS. 
900 |a ^aDrayton^bM. 
900 |a ^aMouradov^bA. 
900 |a ^aPanter^bS. 
900 |a ^aSchrauf^bG.E. 
900 |a ^aMason^bJ.G. 
900 |a ^aSpangenberg^bG.C. 
900 |a ^aGiordano^bA. 
900 |a ^aCogan^bN. O. I. 
900 |a ^aKaur^bS. 
900 |a ^aDrayton^bM. 
900 |a ^aMouradov^bA. 
900 |a ^aPanter^bS. 
900 |a ^aSchrauf^bG. E. 
900 |a ^aMason^bJ. G. 
900 |a ^aSpangenberg^bG. C. 
900 |a Giordano, A. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Giordano, A. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Giordano, A. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Giordano, A. La Trobe University, Bundoora, VIC, Australia 
900 |a Cogan, N.O.I. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Cogan, N.O.I. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Cogan, N.O.I. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Kaur, S. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Drayton, M. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Drayton, M. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Drayton, M. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Mouradov, A. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Mouradov, A. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Mouradov, A. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Panter, S. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Panter, S. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Panter, S. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Schrauf, G.E. Facultad de Agronomia, Universidad de Buenos Aires, Buenos Aires, Argentina 
900 |a Mason, J.G. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Mason, J.G. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Mason, J.G. La Trobe University, Bundoora, VIC, Australia 
900 |a Spangenberg, G.C. Department of Environment and Primary Industries, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia 
900 |a Spangenberg, G.C. Molecular Plant Breeding Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Spangenberg, G.C. Dairy Futures Cooperative Research Centre, Bundoora, VIC, Australia 
900 |a Spangenberg, G.C. La Trobe University, Bundoora, VIC, Australia 
900 |a ^tPLoS ONE^cPLoS ONE 
900 |a eng 
900 |a e85050 
900 |a ^i 
900 |a Vol. 9, no. 2 
900 |a MOLECULAR MARKER 
900 |a PLANT RNA 
900 |a BRACHYPODIUM 
900 |a CATALYSIS 
900 |a CELL COMPONENT 
900 |a ENZYME ACTIVITY 
900 |a FOXTAIL MILLET 
900 |a GENE ONTOLOGY 
900 |a GENE SEQUENCE 
900 |a GENETIC RESOURCE 
900 |a GENETIC VARIABILITY 
900 |a HIGH THROUGHPUT SEQUENCING 
900 |a MOLECULAR GENETICS 
900 |a NONHUMAN 
900 |a NUCLEOTIDE BINDING SITE 
900 |a PASPALUM DILATATUM 
900 |a PLANT GENOME 
900 |a PROTEING BINDING 
900 |a RICE 
900 |a SIGNAL TRANSDUCTION 
900 |a SORGHUM 
900 |a CONTIG MAPPING 
900 |a EXPRESSED SEQUENCE TAGS 
900 |a GENE ONTOLOGY 
900 |a GENETIC ASSOCIATION STUDIES 
900 |a GENETIC MARKERS 
900 |a GENOME, PLANT 
900 |a HIGH-THROUGHPUT NUCLEOTIDE SEQUENCING 
900 |a MICROSATELLITE REPEATS 
900 |a MOLECULAR SEQUENCE ANNOTATION 
900 |a NUCLEOTIDE MOTIFS 
900 |a PASPALUM 
900 |a POLYMORPHISM, GENETIC 
900 |a REPRODUCCIBILITY OF RESULTS 
900 |a RNA, MESSENGER 
900 |a Background: Paspalum dilatatum Poir. [common name dallisgrass] is a native grass species of South America, with special relevance to dairy and red meat production. P. dilatatum exhibits higher forage quality than other C4 forage grasses and is tolerant to frost and water stress. This species is predominantly cultivated in an apomictic monoculture, with an inherent high risk that biotic and abiotic stresses could potentially devastate productivity. Therefore, advanced breeding strategies that characterise and use available genetic diversity, or assess germplasm collections effectively are required to deliver advanced cultivars for production systems. However, there are limited genomic resources available for this forage grass species. Results: Transcriptome sequencing using second-generation sequencing platforms has been employed using pooled RNA from different tissues [stems, roots, leaves and inflorescences] at the final reproductive stage of P. dilatatum cultivar Primo. A total of 324,695 sequence reads were obtained, corresponding to c. 102 Mbp. The sequences were assembled, generating 20,169 contigs of a combined length of 9,336,138 nucleotides. The contigs were BLAST analysed against the fully sequenced grass species of Oryza sativa subsp. japonica, Brachypodium distachyon, the closely related Sorghum bicolor and foxtail millet [Setaria italica] genomes as well as against the UniRef 90 protein database allowing a comprehensive gene ontology analysis to be performed. The contigs generated from the transcript sequencing were also analysed for the presence of simple sequence repeats [SSRs]. A total of 2,339 SSR motifs were identified within 1,989 contigs and corresponding primer pairs were designed. Empirical validation of a cohort of 96 SSRs was performed, with 34 percent being polymorphic between sexual and apomictic biotypes. Conclusions: The development of genetic and genomic resources for P. dilatatum will contribute to gene discovery and expression studies. Association of gene function with agronomic traits will significantly enable molecular breeding and advance germplasm enhancement. 
900 |a 9 
900 |a 2 
900 |a 2014 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2014giordano 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/download/articulo/2014giordano.pdf 
900 |a http://www.plosone.org/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84895762602&partnerID=40&md5=fb5e2d9e08806f1a225b3c8c21506959 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc