Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks

Circadian clocks, the molecular devices present in almost all eukaryotic and some prokaryotic organisms, phase biological activities to the most appropriate time of day. These devices are synchronized by the daily cycles of light and temperature, and control hundreds of processes, ranging from gene...

Descripción completa

Detalles Bibliográficos
Autor principal: Perez Santángelo, Soledad
Otros Autores: Schlaen, Rubén Gustavo, Yanovsky, Marcelo J.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2013perezsantangelo.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08343cab a22018017a 4500
001 AR-BaUFA000560
003 AR-BaUFA
005 20220816122925.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46994  |d 46994 
022 |a 2041-2649 
024 |a 10.1093/bfgp/els052 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |a Perez Santángelo, Soledad  |9 72663 
245 0 0 |a Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks 
520 |a Circadian clocks, the molecular devices present in almost all eukaryotic and some prokaryotic organisms, phase biological activities to the most appropriate time of day. These devices are synchronized by the daily cycles of light and temperature, and control hundreds of processes, ranging from gene expression to behavior as well as reproductive development. For a long time, these clocks were considered to operate primarily through regulatory feedback loops that act at the transcriptional level. Recent studies, however, conclusively show that circadian rhythms can persist in the absence of transcription, and it is evident that robust and precise circadian oscillations require multiple regulatory mechanisms operating at the co-/post-transcriptional, translational, post-translational and metabolic levels. Furthermore, these different regulatory loops exhibit strong interactions, which contribute to the synchronization of biological rhythms with environmental changes throughout the day and year. Here, we describe recent advances that highlight the role of alternative splicing [AS] in the operation of circadian networks, focusing on molecular and genomic studies conducted in Arabidopsis thaliana. These studies have also enhanced our understanding of the mechanisms that control AS and of the physiological impact of AS. 
653 0 |a ALTERNATIVE SPLICING 
653 0 |a ARABIDOPSIS THALIANA 
653 0 |a CIRCADIAN RHYTHMS 
653 0 |a GENE EXPRESSION NETWORKS 
653 0 |a GLYCINE RICH PROTEIN 7 
653 0 |a MESSENGER RNA 
653 0 |a PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR 
653 0 |a RNA BINDING PROTEIN 
653 0 |a TRANSCRIPTION FACTOR CLOCK 
653 0 |a TRANSCRIPTOME 
653 0 |a UNCLASSIFIED DRUG 
653 0 |a ABIOTIC STRESS 
653 0 |a ALTERNATIVE RNA SPLICING 
653 0 |a ARABIDOPSIS 
653 0 |a BEHAVIOR 
653 0 |a CIRCADIAN RHYTHM 
653 0 |a DROSOPHILA 
653 0 |a ENVIRONMENTAL CHANGE 
653 0 |a EXON 
653 0 |a GENE EXPRESSION 
653 0 |a GENE MUTATION 
653 0 |a GENETIC SELECTION 
653 0 |a GENETIC TRANSCRIPTION 
653 0 |a GENOMICS 
653 0 |a HIGH THROUGHPUT SEQUENCING 
653 0 |a INTRON RETENTION 
653 0 |a LIGHT 
653 0 |a NONHUMAN 
653 0 |a REAL TIME POLYMERASE CHAIN REACTION 
653 0 |a REGULATORY MECHANISM 
653 0 |a RNA SEQUENCE 
653 0 |a SIGNAL TRANSDUCTION 
653 0 |a TEMPERATURE 
653 0 |a ALTERNATIVE SPLICING 
653 0 |a ANIMALS 
653 0 |a CIRCADIAN CLOCKS 
653 0 |a GENE REGULATORY NETWORKS 
653 0 |a HUMANS 
653 0 |a PLANTS 
653 0 |a SIGNAL TRANSDUCTION 
653 0 |a EUKARYOTA 
653 0 |a PROKARYOTA 
700 1 |a Schlaen, Rubén Gustavo  |9 72664 
700 1 |9 11465  |a Yanovsky, Marcelo J. 
773 |t Briefings in Functional Genomics  |g vol.12, no.1 (2013), p.13-24 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2013perezsantangelo.pdf  |i En reservorio  |q application/pdf  |f 2013perezsantangelo  |x MIGRADOS2018 
856 |u http://www.oxfordjournals.org/en/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20141009 
900 |a N13 
900 |a SCOPUS 
900 |a N13SCOPUS 
900 |a EMBARGO 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 20412649 
900 |a 10.1093/bfgp/els052 
900 |a ^tGenomic analysis reveals novel connections between alternative splicing and circadian regulatory networks 
900 |a ^aPerez-santángelo^bS. 
900 |a ^aSchlaen^bR.G. 
900 |a ^aYanovsky^bM.J. 
900 |a ^aPerez Santángelo^bS. 
900 |a ^aSchlaen^bR. G. 
900 |a ^aYanovsky^bM. J. 
900 |a ^aPerez-santángelo^bS.^tLeloir Institute 
900 |a ^aPerez-santángelo, S.^tStudent. University of Buenos Aires (UBA), Argentina 
900 |a ^aSchlaen, R.G.^tStudent. University of Buenos Aires (UBA). 
900 |a ^aYanovsky, M.J^tSchool of Agronomy, UBA, Argentina 
900 |a ^aYanovsky, M.J.^tFundacion Instituto Leloir, Instituto de Investigaciones Bioquimicas de Buenos Aires-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina 
900 |a ^aYanovsky, M.J.^tComparative Developmental Genomics Laboratory at the Leloir Institute 
900 |a ^tBriefings in Functional Genomics^cBrief. Funct. Genomics 
900 |a en 
900 |a 13 
900 |a ^i 
900 |a Vol. 12, no. 1 
900 |a 24 
900 |a ALTERNATIVE SPLICING 
900 |a ARABIDOPSIS THALIANA 
900 |a CIRCADIAN RHYTHMS 
900 |a GENE EXPRESSION NETWORKS 
900 |a GLYCINE RICH PROTEIN 7 
900 |a MESSENGER RNA 
900 |a PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR 
900 |a RNA BINDING PROTEIN 
900 |a TRANSCRIPTION FACTOR CLOCK 
900 |a TRANSCRIPTOME 
900 |a UNCLASSIFIED DRUG 
900 |a ABIOTIC STRESS 
900 |a ALTERNATIVE RNA SPLICING 
900 |a ARABIDOPSIS 
900 |a BEHAVIOR 
900 |a CIRCADIAN RHYTHM 
900 |a DROSOPHILA 
900 |a ENVIRONMENTAL CHANGE 
900 |a EXON 
900 |a GENE EXPRESSION 
900 |a GENE MUTATION 
900 |a GENETIC SELECTION 
900 |a GENETIC TRANSCRIPTION 
900 |a GENOMICS 
900 |a HIGH THROUGHPUT SEQUENCING 
900 |a INTRON RETENTION 
900 |a LIGHT 
900 |a NONHUMAN 
900 |a REAL TIME POLYMERASE CHAIN REACTION 
900 |a REGULATORY MECHANISM 
900 |a RNA SEQUENCE 
900 |a SIGNAL TRANSDUCTION 
900 |a TEMPERATURE 
900 |a ALTERNATIVE SPLICING 
900 |a ANIMALS 
900 |a CIRCADIAN CLOCKS 
900 |a GENE REGULATORY NETWORKS 
900 |a HUMANS 
900 |a PLANTS 
900 |a SIGNAL TRANSDUCTION 
900 |a EUKARYOTA 
900 |a PROKARYOTA 
900 |a Circadian clocks, the molecular devices present in almost all eukaryotic and some prokaryotic organisms, phase biological activities to the most appropriate time of day. These devices are synchronized by the daily cycles of light and temperature, and control hundreds of processes, ranging from gene expression to behavior as well as reproductive development. For a long time, these clocks were considered to operate primarily through regulatory feedback loops that act at the transcriptional level. Recent studies, however, conclusively show that circadian rhythms can persist in the absence of transcription, and it is evident that robust and precise circadian oscillations require multiple regulatory mechanisms operating at the co-/post-transcriptional, translational, post-translational and metabolic levels. Furthermore, these different regulatory loops exhibit strong interactions, which contribute to the synchronization of biological rhythms with environmental changes throughout the day and year. Here, we describe recent advances that highlight the role of alternative splicing [AS] in the operation of circadian networks, focusing on molecular and genomic studies conducted in Arabidopsis thaliana. These studies have also enhanced our understanding of the mechanisms that control AS and of the physiological impact of AS. 
900 |a 12 
900 |a 1 
900 |a 2013 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2013perezsantangelo 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2013perezsantangelo.pdf 
900 |a 2013perezsantangelo.pdf 
900 |a http://www.oxfordjournals.org/en/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84872815534&partnerID=40&md5=4774e37c6b70432bf3aa0dca74cbaa9b 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc