Fuzzy assessment of herbicide resistance risk glyphosate - resistant johnsongrass, Sorghum halepense [L.] Pers., in Argentina's croplands

A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk [GRR] in Sorghum halepense [L.] Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Ferraro, Diego Omar
Otros Autores: Ghersa, Claudio Marco
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2013ferraro.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05961cab a22010457a 4500
001 AR-BaUFA000490
003 AR-BaUFA
005 20220223143412.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46924  |d 46924 
022 |a 0261-2194 
024 |a 10.1016/j.cropro.2013.04.004 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |9 11063  |a Ferraro, Diego Omar 
245 0 0 |a Fuzzy assessment of herbicide resistance risk   |b glyphosate - resistant johnsongrass, Sorghum halepense [L.] Pers., in Argentina's croplands 
520 |a A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk [GRR] in Sorghum halepense [L.] Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1] herbicide usage, 2] crop rotation, 3] landscape characterization, 4] weed dispersal, and 5] mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values [lower than 0 and between 0 and 0.25] were represented in 5.5 percent and 21.5 percent of the cropping area, respectively. Intermediate GRR range [between 0.25 and 0.5] were assessed in 57.3 percent of the cropping area whilst the highest GRR range values [0.5-0.7] were represented in only 15.6 percent of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process. 
653 0 |a FUZZY LOGIC 
653 0 |a HERBICIDE RESISTANCE 
653 0 |a RISK MODELING 
653 0 |a AGRICULTURAL LAND 
653 0 |a ASSESSMENT METHOD 
653 0 |a ECOSYSTEM FUNCTION 
653 0 |a FUZZY MATHEMATICS 
653 0 |a GLYPHOSATE 
653 0 |a HERBICIDE 
653 0 |a LANDSCAPE 
653 0 |a NUMERICAL MODEL 
653 0 |a PESTICIDE RESISTANCE 
653 0 |a SORGHUM 
653 0 |a TRADE-OFF 
653 0 |a ARGENTINA 
700 1 |9 7549  |a Ghersa, Claudio Marco 
773 |t Crop Protection  |g vol.51 (2013), p.32-39 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2013ferraro.pdf  |i En reservorio  |q application/pdf  |f 2013ferraro  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20141009 
900 |a N13 
900 |a SCOPUS 
900 |a N13SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 02612194 
900 |a 10.1016/j.cropro.2013.04.004 
900 |a ^tFuzzy assessment of herbicide resistance risk^sGlyphosate-resistant johnsongrass, Sorghum halepense [L.] Pers., in Argentina's croplands 
900 |a ^aFerraro^bD.O. 
900 |a ^aGhersa^bC.M. 
900 |a ^aFerraro^bD. O. 
900 |a ^aGhersa^bC. M. 
900 |a ^aFerraro^bD.O.^tCátedra de Cerealicultura, IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453, Buenos Aires 1417DSE, Argentina 
900 |a ^aGhersa^bC.M.^tCátedra de Ecología, IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET, Av. San Martín 4453, Buenos Aires 1417DSE, Argentina 
900 |a ^tCrop Protection^cCrop Prot. 
900 |a en 
900 |a 32 
900 |a ^i 
900 |a Vol. 51 
900 |a 39 
900 |a FUZZY LOGIC 
900 |a HERBICIDE RESISTANCE 
900 |a RISK MODELING 
900 |a AGRICULTURAL LAND 
900 |a ASSESSMENT METHOD 
900 |a ECOSYSTEM FUNCTION 
900 |a FUZZY MATHEMATICS 
900 |a GLYPHOSATE 
900 |a HERBICIDE 
900 |a LANDSCAPE 
900 |a NUMERICAL MODEL 
900 |a PESTICIDE RESISTANCE 
900 |a SORGHUM 
900 |a TRADE-OFF 
900 |a ARGENTINA 
900 |a A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk [GRR] in Sorghum halepense [L.] Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1] herbicide usage, 2] crop rotation, 3] landscape characterization, 4] weed dispersal, and 5] mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values [lower than 0 and between 0 and 0.25] were represented in 5.5 percent and 21.5 percent of the cropping area, respectively. Intermediate GRR range [between 0.25 and 0.5] were assessed in 57.3 percent of the cropping area whilst the highest GRR range values [0.5-0.7] were represented in only 15.6 percent of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process. 
900 |a 51 
900 |a 2013 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2013ferraro 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2013ferraro.pdf 
900 |a 2013ferraro.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84878176502&partnerID=40&md5=aaf04d73b489515c635d74cc9217b394 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc