LEADER 09786cab a22017297a 4500
001 AR-BaUFA000464
003 AR-BaUFA
005 20220809130752.0
008 181208t2013 |||||o|||||00||||eng d
999 |c 46898  |d 46898 
022 |a 1554-8929 
024 |a 10.1021/cb400452z 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a PIF - pocket as a target for C. albicans Pkh selective inhibitors 
520 |a The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases [e.g., Ypk, Tpk, Pkc1, and Sch9]. Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals. 
653 0 |a 2 [3 [4 CHLOROPHENYL] 1 [2 [4 CHLOROPHENYLTHIO]PHENYL] 3 OXOPROPYLTHIO]ACETIC ACID 
653 0 |a ANTIFUNGAL AGENT 
653 0 |a FUNGAL PROTEIN 
653 0 |a PHOSPHOINOSITIDE DEPENDENT PROTEIN KINASE 1 
653 0 |a PKH1 PROTEIN 
653 0 |a PKH2 PROTEIN 
653 0 |a PROTEIN INHIBITOR 
653 0 |a PS 77 
653 0 |a REACTIVE OXYGEN METABOLITE 
653 0 |a UNCLASSIFIED DRUG 
653 0 |a ALLOSTERISM 
653 0 |a APOPTOSIS 
653 0 |a CANDIDA ALBICANS 
653 0 |a CONTROLLED STUDY 
653 0 |a DOUBLE STRANDED DNA BREAK 
653 0 |a DRUG MECHANISM 
653 0 |a DRUG TARGETING 
653 0 |a ENDOCYTOSIS 
653 0 |a ENZYME PHOSPHORYLATION 
653 0 |a FUNGAL CELL WALL 
653 0 |a FUNGAL GENE 
653 0 |a FUNGAL STRAIN 
653 0 |a NONHUMAN 
653 0 |a OXIDATIVE STRESS 
653 0 |a PROTEIN DOMAIN 
653 0 |a YEAST CELL 
700 1 |a Pastor Flores, Daniel  |9 72473 
700 1 |a Schulze, Jörg O.  |9 72474 
700 1 |a Bahí, Anna  |9 72475 
700 1 |9 68244  |a Giacometti, Romina 
700 1 |a Ferrer Dalmau, Jofre  |9 72476 
700 1 |9 48345  |a Passeron, Susana 
700 1 |a Engel, Matthias  |9 72477 
700 1 |a Süß, Evelyn  |9 72478 
700 1 |a Casamayor, Antonio  |9 72479 
700 1 |a Biondi, Ricardo M.  |9 69374 
773 |t ACS Chemical Biology  |g vol.8, no.10 (2013), p.2283-2292 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2013pastorflores.pdf  |i En reservorio  |q application/pdf  |f 2013pastorflores  |x MIGRADOS2018 
856 |u https://pubs.acs.org/  |x MIGRADO2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20141009 
900 |a N13 
900 |a N13SCOPUS 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 15548929 
900 |a 10.1021/cb400452z 
900 |a ^tPIF-pocket as a target for C. albicans Pkh selective inhibitors 
900 |a ^aPastor-Flores^bD. 
900 |a ^aSchulze^bJ.O. 
900 |a ^aBahí^bA. 
900 |a ^aGiacometti^bR. 
900 |a ^aFerrer-Dalmau^bJ. 
900 |a ^aPasseron^bS. 
900 |a ^aEngel^bM. 
900 |a ^aSüß^bE. 
900 |a ^aCasamayor^bA. 
900 |a ^aBiondi^bR.M. 
900 |a ^aPastor Flores^bD. 
900 |a ^aSchulze^bJ. O. 
900 |a ^aBahí^bA. 
900 |a ^aGiacometti^bR. 
900 |a ^aFerrer Dalmau^bJ. 
900 |a ^aPasseron^bS. 
900 |a ^aEngel^bM. 
900 |a ^aSüß^bE. 
900 |a ^aCasamayor^bA. 
900 |a ^aBiondi^bR. M. 
900 |a ^aPastor-Flores^bD.^tResearch Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 
900 |a ^aSchulze^bJ.O.^tResearch Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 
900 |a ^aBahí^bA.^tDepartament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain 
900 |a ^aGiacometti^bR.^tCátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina 
900 |a ^aFerrer-Dalmau^bJ.^tDepartament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain 
900 |a ^aPasseron^bS.^tCátedra de Bioquímica, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina 
900 |a ^aEngel^bM.^tPharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany 
900 |a ^aSüß^bE.^tResearch Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 
900 |a ^aCasamayor^bA.^tDepartament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain 
900 |a ^aBiondi^bR.M.^tResearch Group PhosphoSites, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany 
900 |a ^aBahí^bA.^tInstitut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spainn 
900 |a ^aFerrer-Dalmau^bJ.^tInstitut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spainn 
900 |a ^aCasamayor^bA.^tInstitut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola 08193, Barcelona, Spain 
900 |a ^tACS Chemical Biology^cACS Chem. Biol. 
900 |a en 
900 |a 2283 
900 |a ^i 
900 |a Vol. 8, no. 10 
900 |a 2292 
900 |a 2 [3 [4 CHLOROPHENYL] 1 [2 [4 CHLOROPHENYLTHIO]PHENYL] 3 OXOPROPYLTHIO]ACETIC ACID 
900 |a ANTIFUNGAL AGENT 
900 |a FUNGAL PROTEIN 
900 |a PHOSPHOINOSITIDE DEPENDENT PROTEIN KINASE 1 
900 |a PKH1 PROTEIN 
900 |a PKH2 PROTEIN 
900 |a PROTEIN INHIBITOR 
900 |a PS 77 
900 |a REACTIVE OXYGEN METABOLITE 
900 |a UNCLASSIFIED DRUG 
900 |a ALLOSTERISM 
900 |a APOPTOSIS 
900 |a CANDIDA ALBICANS 
900 |a CONTROLLED STUDY 
900 |a DOUBLE STRANDED DNA BREAK 
900 |a DRUG MECHANISM 
900 |a DRUG TARGETING 
900 |a ENDOCYTOSIS 
900 |a ENZYME PHOSPHORYLATION 
900 |a FUNGAL CELL WALL 
900 |a FUNGAL GENE 
900 |a FUNGAL STRAIN 
900 |a NONHUMAN 
900 |a OXIDATIVE STRESS 
900 |a PROTEIN DOMAIN 
900 |a YEAST CELL 
900 |a The phosphoinositide-dependent protein kinase 1, PDK1, is a master kinase that phosphorylates the activation loop of up to 23 AGC kinases. S. cerevisiae has three PDK1 orthologues, Pkh1-3, which also phosphorylate AGC kinases [e.g., Ypk, Tpk, Pkc1, and Sch9]. Pkh1 and 2 are redundant proteins involved in multiple essential cellular functions, including endocytosis and cell wall integrity. Based on similarities with the budding yeast, the Pkh of fungal infectious species was postulated as a novel target for antifungals. Here, we found that depletion of Pkh eventually induces oxidative stress and DNA double-strand breaks, leading to programmed cell death. This finding supports Pkh as an antifungal target since pharmacological inhibition of Pkh would lead to the death of yeast cells, the ultimate goal of antifungals. It was therefore of interest to further investigate the possibility to develop Pkh inhibitors with selectivity for Candida Pkh that would not inhibit the human ortholog. Here, we describe C. albicans Pkh2 biochemically, structurally and by using chemical probes in comparison to human PDK1. We found that a regulatory site on the C. albicans Pkh2 catalytic domain, the PIF-pocket, diverges from human PDK1. Indeed, we identified and characterized PS77, a new small allosteric inhibitor directed to the PIF-pocket, which has increased selectivity for C. albicans Pkh2. Together, our results describe novel features of the biology of Pkh and chemical biology approaches that support the validation of Pkh as a drug target for selective antifungals. 
900 |a 8 
900 |a 10 
900 |a 2013 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2013pastorflores 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2013pastorflores.pdf 
900 |a 2013pastorflores.pdf 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84886481656&partnerID=40&md5=34ff35884d5bd41db33bdfbc70137f50 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc