Speckle noise and soil heterogeneities as error sources in a bayesian soil moisture retrieval scheme for SAR data

Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Barber, Matías, Grings, Francisco, Perna, Pablo, Piscitelli, Marcela, Maas, Martin, Bruscantini, Cintia, Jacobo Berlles, Julio, Karszenbaum, Haydeé
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2012Barber.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 10027cab a22021977a 4500
001 AR-BaUFA000419
003 AR-BaUFA
005 20210706165634.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46853  |d 46853 
022 |a 1939-1404 
024 |a 10.1109/JSTARS.2012.2191266 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Speckle noise and soil heterogeneities as error sources in a bayesian soil moisture retrieval scheme for SAR data 
520 |a Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh's model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimization-based procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition. 
653 0 |a BAYESIAN METHODS 
653 0 |a INVERSE PROBLEMS 
653 0 |a RADAR APPLICATIONS 
653 0 |a SOIL MOISTURE 
653 0 |a SYNTHETIC APERTURE RADAR 
653 0 |a BACKSCATTERING COEFFICIENTS 
653 0 |a BAYESIAN APPROACHES 
653 0 |a BAYESIAN ESTIMATORS 
653 0 |a BAYESIAN METHODS 
653 0 |a BAYESIAN MODEL 
653 0 |a BAYESIAN RETRIEVAL 
653 0 |a ERROR SOURCES 
653 0 |a MATHEMATICAL MODELING 
653 0 |a MULTILOOKING 
653 0 |a OPTIMUM PARAMETERS 
653 0 |a POLARIMETRIC SAR 
653 0 |a PRIOR INFORMATION 
653 0 |a RADAR APPLICATIONS 
653 0 |a SAR DATA 
653 0 |a SAR IMAGES 
653 0 |a SCATTERING MODEL 
653 0 |a SOIL CONDITIONS 
653 0 |a SOIL HETEROGENEITY 
653 0 |a SOIL MOISTURE RETRIEVALS 
653 0 |a SOIL PARAMETERS 
653 0 |a SPATIAL HETEROGENEITY 
653 0 |a SPECKLE EFFECTS 
653 0 |a SPECKLE NOISE 
653 0 |a STATISTICAL DISTRIBUTION 
653 0 |a ALGORITHMS 
653 0 |a BAYESIAN NETWORKS 
653 0 |a COMPUTER SIMULATION 
653 0 |a ESTIMATION 
653 0 |a INVERSE PROBLEMS 
653 0 |a POLARIMETERS 
653 0 |a SOIL MOISTURE 
653 0 |a SPECKLE 
653 0 |a SYNTHETIC APERTURE RADAR 
653 0 |a UNCERTAINTY ANALYSIS 
653 0 |a GEOLOGIC MODELS 
653 0 |a ACCURACY ASSESSMENT 
653 0 |a ALGORITHM 
653 0 |a BACKSCATTER 
653 0 |a BAYESIAN ANALYSIS 
653 0 |a ERROR ANALYSIS 
653 0 |a HETEROGENEITY 
653 0 |a INVERSE PROBLEM 
653 0 |a NOISE 
653 0 |a NUMERICAL MODEL 
653 0 |a STATISTICAL DISTRIBUTION 
653 0 |a SYNTHETIC APERTURE RADAR 
700 1 |a Barber, Matías  |9 72315 
700 1 |a Grings, Francisco  |9 72316 
700 1 |a Perna, Pablo  |9 72317 
700 1 |a Piscitelli, Marcela  |9 8189 
700 1 |a Maas, Martin  |9 72318 
700 1 |a Bruscantini, Cintia  |9 72319 
700 1 |a Jacobo Berlles, Julio  |9 72320 
700 1 |a Karszenbaum, Haydeé  |9 72321 
773 |t IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  |g vol.5, no.3 (2012), p.942-951 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2012Barber.pdf  |i En reservorio  |q application/pdf  |f 2012Barber  |x MIGRADOS2018 
856 |u http://www.ieee.org/index.html  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 19391404 
900 |a 10.1109/JSTARS.2012.2191266 
900 |a ^tSpeckle noise and soil heterogeneities as error sources in a bayesian soil moisture retrieval scheme for SAR data 
900 |a ^aBarber^bM. 
900 |a ^aGrings^bF. 
900 |a ^aPerna^bP. 
900 |a ^aPiscitelli^bM. 
900 |a ^aMaas^bM. 
900 |a ^aBruscantini^bC. 
900 |a ^aJacobo-Berlles^bJ. 
900 |a ^aKarszenbaum^bH. 
900 |a ^aBarber^bM. 
900 |a ^aGrings^bF. 
900 |a ^aPerna^bP. 
900 |a ^aPiscitelli^bM. 
900 |a ^aMaas^bM. 
900 |a ^aBruscantini^bC. 
900 |a ^aJacobo Berlles^bJ. 
900 |a ^aKarszenbaum^bH. 
900 |a ^aBarber^bM.^tInstituto de Astronomía y Física Del Espacio [IAFE], Buenos Aires, Argentina 
900 |a ^aGrings^bF.^tCátedra de Conservación y Manejo de Suelos, Facultad de Agronomía, Centro de la Pcia. de Buenos Aires [UNICEN], Buenos Aires, Argentina 
900 |a ^aPerna^bP.^tDepartamento de Computación, Facultad de Ciencias Exactas y Naturales [FCEN], Universidad de Buenos Aires [UBA], Buenos Aires, Argentina 
900 |a ^aPiscitelli^bM. 
900 |a ^aMaas^bM. 
900 |a ^aBruscantini^bC. 
900 |a ^aJacobo-Berlles^bJ. 
900 |a ^aKarszenbaum^bH. 
900 |a ^tIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing^cIEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 
900 |a en 
900 |a 942 
900 |a ^i 
900 |a Vol. 5, no. 3 
900 |a 951 
900 |a BAYESIAN METHODS 
900 |a INVERSE PROBLEMS 
900 |a RADAR APPLICATIONS 
900 |a SOIL MOISTURE 
900 |a SYNTHETIC APERTURE RADAR 
900 |a BACKSCATTERING COEFFICIENTS 
900 |a BAYESIAN APPROACHES 
900 |a BAYESIAN ESTIMATORS 
900 |a BAYESIAN METHODS 
900 |a BAYESIAN MODEL 
900 |a BAYESIAN RETRIEVAL 
900 |a ERROR SOURCES 
900 |a MATHEMATICAL MODELING 
900 |a MULTILOOKING 
900 |a OPTIMUM PARAMETERS 
900 |a POLARIMETRIC SAR 
900 |a PRIOR INFORMATION 
900 |a RADAR APPLICATIONS 
900 |a SAR DATA 
900 |a SAR IMAGES 
900 |a SCATTERING MODEL 
900 |a SOIL CONDITIONS 
900 |a SOIL HETEROGENEITY 
900 |a SOIL MOISTURE RETRIEVALS 
900 |a SOIL PARAMETERS 
900 |a SPATIAL HETEROGENEITY 
900 |a SPECKLE EFFECTS 
900 |a SPECKLE NOISE 
900 |a STATISTICAL DISTRIBUTION 
900 |a ALGORITHMS 
900 |a BAYESIAN NETWORKS 
900 |a COMPUTER SIMULATION 
900 |a ESTIMATION 
900 |a INVERSE PROBLEMS 
900 |a POLARIMETERS 
900 |a SOIL MOISTURE 
900 |a SPECKLE 
900 |a SYNTHETIC APERTURE RADAR 
900 |a UNCERTAINTY ANALYSIS 
900 |a GEOLOGIC MODELS 
900 |a ACCURACY ASSESSMENT 
900 |a ALGORITHM 
900 |a BACKSCATTER 
900 |a BAYESIAN ANALYSIS 
900 |a ERROR ANALYSIS 
900 |a HETEROGENEITY 
900 |a INVERSE PROBLEM 
900 |a NOISE 
900 |a NUMERICAL MODEL 
900 |a STATISTICAL DISTRIBUTION 
900 |a SYNTHETIC APERTURE RADAR 
900 |a Soil moisture retrieval from SAR images is always affected by speckle noise and uncertainties associated to soil parameters, which impact negatively on the accuracy of soil moisture estimates. In this paper a soil moisture Bayesian estimator from polarimetric SAR images is proposed to address these issues. This estimator is based on a set of statistical distributions derived for the polarimetric soil backscattering coefficients, which naturally includes models for the soil scattering, the speckle and the soil spatial heterogeneity. As a natural advantage of the Bayesian approach, prior information about soil condition can be easily included, enhancing the performance of the retrieval. The Oh's model is used as scattering model, although it presents a limiting range of validity for the retrieval of soil moisture. After fully stating the mathematical modeling, numerical simulations are presented. First, traditional minimization-based retrieval is investigated. Then, it is compared with the Bayesian retrieval scheme. The results indicate that the Bayesian model enlarges the validity region of the minimization-based procedure. Moreover, as speckle effects are reduced by multilooking, Bayesian retrieval approaches the minimization-based retrieval. On the other hand, when speckle effects are large, an improvement in the accuracy of the retrieval is achieved by using a precise prior. The proposed algorithm can be applied to investigate which are the optimum parameters regarding multilooking process and prior information required to perform a precise retrieval in a given soil condition. 
900 |a 5 
900 |a 3 
900 |a 2012 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2012Barber 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2012Barber.pdf 
900 |a 2012Barber.pdf 
900 |a http://www.ieee.org/index.html 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84863509344&partnerID=40&md5=538ebb0489dcc2f6169a108a677762bf 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc