LEADER 10009cab a22017537a 4500
001 AR-BaUFA000290
003 AR-BaUFA
005 20220808123310.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46724  |d 46724 
022 |a 0038-0717 
024 |a 10.1016/j.soilbio.2012.02.029 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Analytical models of soil and litter decomposition   |b solutions for mass loss and time-dependent decay rates 
520 |a Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon [C] in surface litter and soil organic matter [SOM]. Long-term decomposition may be suitably analyzed by linear models [i.e., all fluxes defined by first-order kinetics], which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate [k app] through time. Here we compare eight linear models [four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates] and report their analytical solutions for two types of decomposition experiments: i] studies that evaluate the decomposition of a single input of fresh litter [i.e., a single cohort, as in litterbag and C labeling experiments], and ii] studies that evaluate the decomposition of soil samples with compounds of different ages [i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments]. We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony [R 2 = 0.99, lowest Akaike and Bayesian information criteria], while for multiple-cohort data the two-pool models tend to perform better [R 2 = 0.96], perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single 'best' model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate. 
653 0 |a APPARENT DECAY RATE 
653 0 |a CARBON MODEL 
653 0 |a COMPARTMENT MODEL 
653 0 |a CONTINUOUS QUALITY MODEL 
653 0 |a LINEAR SYSTEMS 
653 0 |a SOIL ORGANIC MATTER AND LITTER DECOMPOSITION 
653 0 |a CARBON MODELS 
653 0 |a DECAY RATE 
653 0 |a LITTER DECOMPOSITION 
653 0 |a QUALITY MODELS 
653 0 |a ANALYTICAL MODELS 
653 0 |a BIOGEOCHEMISTRY 
653 0 |a BIOLOGICAL MATERIALS 
653 0 |a C [PROGRAMMING LANGUAGE] 
653 0 |a DECAY [ORGANIC] 
653 0 |a EXPERIMENTS 
653 0 |a ISOTOPES 
653 0 |a LAKES 
653 0 |a LINEAR SYSTEMS 
653 0 |a ORGANIC COMPOUNDS 
653 0 |a RADIOACTIVITY 
653 0 |a RATING 
653 0 |a SOILS 
653 0 |a GEOLOGIC MODELS 
653 0 |a ACCURACY ASSESSMENT 
653 0 |a AKAIKE INFORMATION CRITERION 
653 0 |a ANALYTICAL FRAMEWORK 
653 0 |a BAYESIAN ANALYSIS 
653 0 |a BIOGEOCHEMICAL CYCLE 
653 0 |a CHEMICAL COMPOSITION 
653 0 |a DECOMPOSITION 
653 0 |a LINEARITY 
653 0 |a LITTER 
653 0 |a ORGANIC CARBON 
653 0 |a PARSIMONY ANALYSIS 
653 0 |a SUBSTRATE 
653 0 |a TIME DEPENDENT BEHAVIOR 
700 1 |a Manzoni, Stefano  |9 71909 
700 1 |9 22554  |a Piñeiro, Gervasio 
700 1 |9 67510  |a Jackson, Robert B. 
700 1 |a Jobbágy, Esteban G.  |9 7390 
700 1 |a Kim, John H.  |9 71910 
700 1 |a Porporato, Amilcare  |9 71911 
773 |t Soil Biology and Biochemistry  |g Vol.50 (2012), p.66-76 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2012Manzoni.pdf  |i En reservorio  |q application/pdf  |f 2012Manzoni  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 00380717 
900 |a 10.1016/j.soilbio.2012.02.029 
900 |a ^tAnalytical models of soil and litter decomposition^ssolutions for mass loss and time-dependent decay rates 
900 |a ^aManzoni^bS. 
900 |a ^aPiñeiro^bG. 
900 |a ^aJackson^bR.B. 
900 |a ^aJobbágy^bE.G. 
900 |a ^aKim^bJ.H. 
900 |a ^aPorporato^bA. 
900 |a ^aManzoni^bS. 
900 |a ^aPiñeiro^bG. 
900 |a ^aJackson^bR. B. 
900 |a ^aJobbágy^bE. G. 
900 |a ^aKim^bJ. H. 
900 |a ^aPorporato^bA. 
900 |a ^aManzoni^bS.^tCivil and Environmental Engineering Dept., Duke University, Box 90287, Durham, NC 27708-0287, United States 
900 |a ^aPiñeiro^bG.^tNicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, United States 
900 |a ^aJackson^bR.B.^tIFEVA/CONICET, Facultad de Agronomia, Universidad de Buenos Aires, Buenos Aires, Argentina 
900 |a ^aJobbágy^bE.G.^tDepartment of Biology, Duke University, Box 90338, Durham, NC 27708, United States 
900 |a ^aKim^bJ.H.^tGrupo de Estudios Ambientales, IMASL, Universidad Nacional de San Luis and CONICET, San Luis, Argentina 
900 |a ^aPorporato^bA. 
900 |a ^tSoil Biology and Biochemistry^cSoil Biol. Biochem. 
900 |a en 
900 |a 66 
900 |a ^i 
900 |a Vol. 50 
900 |a 76 
900 |a APPARENT DECAY RATE 
900 |a CARBON MODEL 
900 |a COMPARTMENT MODEL 
900 |a CONTINUOUS QUALITY MODEL 
900 |a LINEAR SYSTEMS 
900 |a SOIL ORGANIC MATTER AND LITTER DECOMPOSITION 
900 |a CARBON MODELS 
900 |a DECAY RATE 
900 |a LITTER DECOMPOSITION 
900 |a QUALITY MODELS 
900 |a ANALYTICAL MODELS 
900 |a BIOGEOCHEMISTRY 
900 |a BIOLOGICAL MATERIALS 
900 |a C [PROGRAMMING LANGUAGE] 
900 |a DECAY [ORGANIC] 
900 |a EXPERIMENTS 
900 |a ISOTOPES 
900 |a LAKES 
900 |a LINEAR SYSTEMS 
900 |a ORGANIC COMPOUNDS 
900 |a RADIOACTIVITY 
900 |a RATING 
900 |a SOILS 
900 |a GEOLOGIC MODELS 
900 |a ACCURACY ASSESSMENT 
900 |a AKAIKE INFORMATION CRITERION 
900 |a ANALYTICAL FRAMEWORK 
900 |a BAYESIAN ANALYSIS 
900 |a BIOGEOCHEMICAL CYCLE 
900 |a CHEMICAL COMPOSITION 
900 |a DECOMPOSITION 
900 |a LINEARITY 
900 |a LITTER 
900 |a ORGANIC CARBON 
900 |a PARSIMONY ANALYSIS 
900 |a SUBSTRATE 
900 |a TIME DEPENDENT BEHAVIOR 
900 |a Combining decomposition data with process-based biogeochemical models is essential to quantify the turnover of organic carbon [C] in surface litter and soil organic matter [SOM]. Long-term decomposition may be suitably analyzed by linear models [i.e., all fluxes defined by first-order kinetics], which allow the derivation of analytical expressions to estimate the loss of C and the overall apparent decay rate [k app] through time. Here we compare eight linear models [four discrete-compartment models with one or two C pools, two models with a single time-dependent decay rate, and two models based on a continuous distribution of decay rates] and report their analytical solutions for two types of decomposition experiments: i] studies that evaluate the decomposition of a single input of fresh litter [i.e., a single cohort, as in litterbag and C labeling experiments], and ii] studies that evaluate the decomposition of soil samples with compounds of different ages [i.e., multiple cohorts, as in long-term incubations or isotope dilution experiments]. We fitted analytical mass loss functions to both types of datasets and evaluated the performance of the models. For single-cohort data, continuous-decay models provide the best balance between accuracy and parsimony [R 2 = 0.99, lowest Akaike and Bayesian information criteria], while for multiple-cohort data the two-pool models tend to perform better [R 2 = 0.96], perhaps because of the strong separation of time scales in the decomposition data considered. Differences among some models are marginal, suggesting that decomposition data alone do not point to a single 'best' model. All models resulted in apparent decay rates that decreased markedly through time, in contrast with the assumption of constant k adopted in the single-pool exponential decay model. We also show how model parameters estimated from single cohort samples can be used to model multiple cohort decomposition, unifying both types of experimental data in one theory. Based on our results, it is possible to distinguish the temporal changes in C loss that are attributable to initial chemical composition or abiotic factors, from those associated with the presence of multiple ages in the substrate. 
900 |a 50 
900 |a 2012 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2012Manzoni 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2012Manzoni.pdf 
900 |a 2012Manzoni.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84860629378&partnerID=40&md5=d25cfcc6604bdf88dc4bb33e3dc2aae0 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc