Linking weather generators and crop models for assessment of climate forecast outcomes

Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator [combining parametric and nonparametric components] with a crop simulation model to assess yields and economic returns relevant to maize pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Apipattanavis, Somkiat, Bert, Federico E., Podestá, Guillermo P., Rajagopalan, Balaji
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2010Apipattanavis.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 06343nab a22012377a 4500
001 AR-BaUFA000235
003 AR-BaUFA
005 20220218135505.0
008 181208t2010 |||||o|||||00||||eng d
999 |c 46669  |d 46669 
022 |a 0168-1923 
024 |a 10.1016/j.agrformet.2009.09.012 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Linking weather generators and crop models for assessment of climate forecast outcomes 
520 |a Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator [combining parametric and nonparametric components] with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions [Pergamino and Pilar] of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino [a climatically optimal location] but modified considerably economic expectations [and thus production risk] in Pilar [a more marginal location]. 
653 0 |a ARGENTINA 
653 0 |a CLIMATE IMPACTS 
653 0 |a MAIZE 
653 0 |a RISK ASSESSMENT 
653 0 |a SEASONAL FORECASTING 
653 0 |a STATISTICAL DOWNSCALING 
653 0 |a AGRICULTURAL PRODUCTION 
653 0 |a CLIMATE EFFECT 
653 0 |a CROP YIELD 
653 0 |a DOWNSCALING 
653 0 |a REGIONAL CLIMATE 
653 0 |a RISK ASSESSMENT 
653 0 |a SIMULATION 
653 0 |a WEATHER FORECASTING 
653 0 |a BUENOS AIRES [ARGENTINA] 
653 0 |a CORDOBA [ARGENTINA] 
653 0 |a PERGAMINO 
653 0 |a PILAR 
653 0 |a ZEA MAYS 
700 1 |a Apipattanavis, Somkiat  |9 70046 
700 1 |9 12448  |a Bert, Federico E. 
700 1 |9 23487  |a Podestá, Guillermo P. 
700 1 |a Rajagopalan, Balaji  |9 68362 
773 |t Agricultural and Forest Meteorology  |g Vol.150, no.2 (2010), p.166-174 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2010Apipattanavis.pdf  |i En reservorio  |q application/pdf  |f 2010Apipattanavis  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 01681923 
900 |a 10.1016/j.agrformet.2009.09.012 
900 |a ^tLinking weather generators and crop models for assessment of climate forecast outcomes 
900 |a ^aApipattanavis^bS. 
900 |a ^aBert^bF. 
900 |a ^aPodestá^bG. 
900 |a ^aRajagopalan^bB. 
900 |a ^aApipattanavis^bS. 
900 |a ^aBert^bF. E. 
900 |a ^aPodestá^bG. P. 
900 |a ^aRajagopalan^bB. 
900 |a ^aApipattanavis^bS.^tDepartment of Civil, Environmental and Architectural Engineering [CEAE], University of Colorado, Boulder, CO, United States 
900 |a ^aBert^bF.^tSchool of Agronomy, University of Buenos Aires, Argentina 
900 |a ^aPodestá^bG.^tRosenstiel School of Marine and Atmospheric Sciences [RSMAS/MPO], University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098, United States 
900 |a ^aRajagopalan^bB.^tCooperative Institute for Research in Environmental Sciences [CIRES], University of Colorado, Boulder, CO, United States 
900 |a ^tAgricultural and Forest Meteorology^cAgric. For. Meterol. 
900 |a en 
900 |a 166 
900 |a ^i 
900 |a Vol. 150, no. 2 
900 |a 174 
900 |a ARGENTINA 
900 |a CLIMATE IMPACTS 
900 |a MAIZE 
900 |a RISK ASSESSMENT 
900 |a SEASONAL FORECASTING 
900 |a STATISTICAL DOWNSCALING 
900 |a AGRICULTURAL PRODUCTION 
900 |a CLIMATE EFFECT 
900 |a CROP YIELD 
900 |a DOWNSCALING 
900 |a REGIONAL CLIMATE 
900 |a RISK ASSESSMENT 
900 |a SIMULATION 
900 |a WEATHER FORECASTING 
900 |a BUENOS AIRES [ARGENTINA] 
900 |a CORDOBA [ARGENTINA] 
900 |a PERGAMINO 
900 |a PILAR 
900 |a ZEA MAYS 
900 |a Agricultural production responses to climate variability require salient information to support decisions. We coupled a new hybrid stochastic weather generator [combining parametric and nonparametric components] with a crop simulation model to assess yields and economic returns relevant to maize production in two contrasting regions [Pergamino and Pilar] of the Pampas of Argentina. The linked models were used to assess likely outcomes and production risks for seasonal forecasts of dry and wet climate. Forecasts involving even relatively small deviations from climatological probabilities of precipitation may have large impacts on agricultural outcomes. Furthermore, yield changes under alternative scenarios have a disproportionate effect on economic risks. Additionally, we show that regions receiving the same seasonal forecast may experience fairly different outcomes: a forecast of dry conditions did not change appreciably the expected distribution of economic margins in Pergamino [a climatically optimal location] but modified considerably economic expectations [and thus production risk] in Pilar [a more marginal location]. 
900 |a 150 
900 |a 2 
900 |a 2010 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2010Apipattanavis 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2010Apipattanavis.pdf 
900 |a 2010Apipattanavis.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-74449083295&partnerID=40&md5=0a4b89442ee013fb497ac9c481a2d7fa 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc