Weed vegetation of sugarcane cropping systems of northern argentina data mining methods for assessing the environmental and management effects on species composition

Weed composition may vary because of natural environment, management practices, and their interactions. In this study we presented a systematic approach for analyzing the relative importance of environmental and management factors on weed composition of the most conspicuous species in sugarcane. A d...

Descripción completa

Detalles Bibliográficos
Autor principal: Ferraro, Diego Omar
Otros Autores: Ghersa, Claudio Marco, Rivero, Darío Ernesto
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2012Ferraro2.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08539nab a22013337a 4500
001 AR-BaUFA000194
003 AR-BaUFA
005 20220223143412.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46628  |d 46628 
022 |a 0043-1745 
024 |a 10.1614/WS-D-11-00023.1 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |9 11063  |a Ferraro, Diego Omar 
245 0 0 |a Weed vegetation of sugarcane cropping systems of northern argentina  |b data mining methods for assessing the environmental and management effects on species composition 
520 |a Weed composition may vary because of natural environment, management practices, and their interactions. In this study we presented a systematic approach for analyzing the relative importance of environmental and management factors on weed composition of the most conspicuous species in sugarcane. A data-mining approach represented by k-means cluster and classification and regression trees [CART] were used for analyzing the 11 most frequent weeds recorded in sugarcane cropping systems of northern Argentina. Data of weed abundance and explanatory factors contained records from 1976 sugarcane fields over 2 consecutive years. The k-means method selected five different weed clusters. One cluster contained 44 percent of the data and exhibited the lowest overall weed abundance. The other four clusters were dominated by three perennial species, bermudagrass, johnsongrass, and purple nutsedge, and the annual itchgrass. The CART model was able to explain 44 percent of the sugarcane's weed composition variability. Four of the five clusters were represented in the terminal nodes of the final CART model. Sugarcane burning before harvesting was the first factor selected in the CART, and all nodes resulting from this split were characterized by low abundance of weeds. Regarding the predictive power of the variables, rainfall and the genotype identity were the most important predictors. These results have management implications as they indicate that the genotype identity would be a more important factor than crop age when designing sugarcane weed management. Moreover, the abiotic control of cropweed interaction would be more related to rainfall than the environmental heterogeneity related to soil type, for example soil fertility. Although all these exploratory patterns resulting from the CART data-mining procedure should be refined, it became clear that this information may be used to develop an experimental framework to study the factors driving weed assembly. Nomenclature: Bermudagrass, Cynodon dactylon Pers. [CYNDA]; johnsongrass, Sorghum halepense [L.] Pers. [SORHA]; purple nutsedge, Cyperus rotundus L. [CYPRO]; itchgrass, Rottboellia exaltata [L.] L.f.[ROOEX]. 
653 0 |a CLASSIFICATION AND REGRESSION TREES 
653 0 |a STATISTICS 
653 0 |a SUGARCANE 
653 0 |a WEED COMPOSITION 
653 0 |a ABUNDANCE 
653 0 |a CLUSTER ANALYSIS 
653 0 |a CROPPING PRACTICE 
653 0 |a DATA MINING 
653 0 |a ENVIRONMENTAL FACTOR 
653 0 |a GRASS 
653 0 |a INTEGRATED APPROACH 
653 0 |a INTEGRATED PEST MANAGEMENT 
653 0 |a MANAGEMENT PRACTICE 
653 0 |a RAINFALL 
653 0 |a SOIL FERTILITY 
653 0 |a SOIL TYPE 
653 0 |a SUGAR CANE 
653 0 |a WEED CONTROL 
653 0 |a ARGENTINA 
653 0 |a CYNODON [ANGIOSPERM] 
653 0 |a CYNODON DACTYLON 
653 0 |a CYPERUS ROTUNDUS 
653 0 |a ROTTBOELLIA 
653 0 |a ROTTBOELLIA COCHINCHINENSIS 
653 0 |a SORGHUM HALEPENSE 
700 1 |9 7549  |a Ghersa, Claudio Marco 
700 |a Rivero, Darío Ernesto  |9 13021 
773 |t Weed Science  |g Vol.60, no.1 (2012), p.27-33 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2012Ferraro2.pdf  |i En reservorio  |q application/pdf  |f 2012Ferraro2  |x MIGRADOS2018 
856 |u http://wssa.net/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 00431745 
900 |a 10.1614/WS-D-11-00023.1 
900 |a ^tWeed vegetation of sugarcane cropping systems of northern argentina^sdata-mining methods for assessing the environmental and management effects on species composition 
900 |a ^aFerraro^bD.O. 
900 |a ^aGhersa^bC.M. 
900 |a ^aRivero^bD.E. 
900 |a ^aFerraro^bD. O. 
900 |a ^aGhersa^bC. M. 
900 |a ^aRivero^bD. E. 
900 |a ^aFerraro^bD.O.^tIFEVA, Ctedra de Cerealicultura, Facultad de Agronoma, Universidad de Buenos Aires/CONICET, Av. San Martn 4453, Buenos Aires [1417DSE], Argentina 
900 |a ^aGhersa^bC.M.^tIFEVA, Ctedra de Ecologa, Facultad de Agronoma, Universidad de Buenos Aires/CONICET, Argentina 
900 |a ^aRivero^bD.E. 
900 |a ^tWeed Science^cWeed Sci. 
900 |a en 
900 |a 27 
900 |a ^i 
900 |a Vol. 60, no. 1 
900 |a 33 
900 |a CLASSIFICATION AND REGRESSION TREES 
900 |a STATISTICS 
900 |a SUGARCANE 
900 |a WEED COMPOSITION 
900 |a ABUNDANCE 
900 |a CLUSTER ANALYSIS 
900 |a CROPPING PRACTICE 
900 |a DATA MINING 
900 |a ENVIRONMENTAL FACTOR 
900 |a GRASS 
900 |a INTEGRATED APPROACH 
900 |a INTEGRATED PEST MANAGEMENT 
900 |a MANAGEMENT PRACTICE 
900 |a RAINFALL 
900 |a SOIL FERTILITY 
900 |a SOIL TYPE 
900 |a SUGAR CANE 
900 |a WEED CONTROL 
900 |a ARGENTINA 
900 |a CYNODON [ANGIOSPERM] 
900 |a CYNODON DACTYLON 
900 |a CYPERUS ROTUNDUS 
900 |a ROTTBOELLIA 
900 |a ROTTBOELLIA COCHINCHINENSIS 
900 |a SORGHUM HALEPENSE 
900 |a Weed composition may vary because of natural environment, management practices, and their interactions. In this study we presented a systematic approach for analyzing the relative importance of environmental and management factors on weed composition of the most conspicuous species in sugarcane. A data-mining approach represented by k-means cluster and classification and regression trees [CART] were used for analyzing the 11 most frequent weeds recorded in sugarcane cropping systems of northern Argentina. Data of weed abundance and explanatory factors contained records from 1976 sugarcane fields over 2 consecutive years. The k-means method selected five different weed clusters. One cluster contained 44 percent of the data and exhibited the lowest overall weed abundance. The other four clusters were dominated by three perennial species, bermudagrass, johnsongrass, and purple nutsedge, and the annual itchgrass. The CART model was able to explain 44 percent of the sugarcane's weed composition variability. Four of the five clusters were represented in the terminal nodes of the final CART model. Sugarcane burning before harvesting was the first factor selected in the CART, and all nodes resulting from this split were characterized by low abundance of weeds. Regarding the predictive power of the variables, rainfall and the genotype identity were the most important predictors. These results have management implications as they indicate that the genotype identity would be a more important factor than crop age when designing sugarcane weed management. Moreover, the abiotic control of cropweed interaction would be more related to rainfall than the environmental heterogeneity related to soil type, for example soil fertility. Although all these exploratory patterns resulting from the CART data-mining procedure should be refined, it became clear that this information may be used to develop an experimental framework to study the factors driving weed assembly. Nomenclature: Bermudagrass, Cynodon dactylon Pers. [CYNDA]; johnsongrass, Sorghum halepense [L.] Pers. [SORHA]; purple nutsedge, Cyperus rotundus L. [CYPRO]; itchgrass, Rottboellia exaltata [L.] L.f.[ROOEX]. 
900 |a 60 
900 |a 1 
900 |a 2012 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2012Ferraro2 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2012Ferraro2.pdf 
900 |a 2012Ferraro2.pdf 
900 |a http://wssa.net/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84856003775&partnerID=40&md5=1fcfd83203ba1184a70cbbe399cfaa2d 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc