Growth of the dominant macrophyte Carex aquatilis is inhibited in oil sands affected wetlands in Northern Alberta, Canada

Carex aquatilis could be a suitable species for wetland reclamation in mined boreal landscapes as those of the oil sands industry [Northern Alberta]. We compared the performance of C. aquatilis plants established in oil sands industrial wetlands [directly affected by processed materials], on-site in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Mollard, Federico Pedro Otto, Roy, Marie Claude, Frederick, Kurt, Foote, A. Lee
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2012Mollard.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 08251cab a22019817a 4500
001 AR-BaUFA000162
003 AR-BaUFA
005 20230222131518.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46596  |d 46596 
022 |a 0925-8574 
024 |a 10.1016/j.ecoleng.2011.09.002 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Growth of the dominant macrophyte Carex aquatilis is inhibited in oil sands affected wetlands in Northern Alberta, Canada 
520 |a Carex aquatilis could be a suitable species for wetland reclamation in mined boreal landscapes as those of the oil sands industry [Northern Alberta]. We compared the performance of C. aquatilis plants established in oil sands industrial wetlands [directly affected by processed materials], on-site indirectly affected wetlands, and off-site natural wetlands. We studied leaf chemistry, fluorescence, gas exchange rates [net photosynthesis and transpiration rates], and morphological features of plants. Despite higher photochemistry efficiency in oil sands populations, plants did not channelize surplus energy into increased carbon assimilation rates. Oil sands populations registered lower culm heights and leaf lengths than natural populations. Plants growing in industrial wetlands were shorter and accumulated more sodium in leaves than plants from indirectly affected wetlands. Evidence indicated that C. aquatilis was a promising species for reclamation as it was tolerant to pollution. Though it survived, C. aquatilis, showed a restricted growth in the oil sands wetlands thereby possibly limiting carbon assimilation at the stand level. Oil sands wetlands amended with freshwater and established over non-industrial materials provided better growing conditions for C. aquatilis and demonstrated management tools for local reclamation efforts. 
653 0 |a BIOLOGICAL INDICATORS 
653 0 |a CHLOROPHYLL A FLUORESCENCE TRANSIENTS 
653 0 |a LAND RECLAMATION 
653 0 |a MINING 
653 0 |a SALINITY 
653 0 |a WATER SEDGE 
653 0 |a ALBERTA , CANADA 
653 0 |a CARBON ASSIMILATION 
653 0 |a GAS EXCHANGE RATE 
653 0 |a GROWING CONDITIONS 
653 0 |a LEAF LENGTH 
653 0 |a MACROPHYTES 
653 0 |a MANAGEMENT TOOL 
653 0 |a MORPHOLOGICAL FEATURES 
653 0 |a NATURAL POPULATION 
653 0 |a NATURAL WETLAND 
653 0 |a OIL SANDS INDUSTRY 
653 0 |a PLANTS GROWING 
653 0 |a STAND LEVELS 
653 0 |a SURPLUS ENERGY 
653 0 |a TRANSPIRATION RATES 
653 0 |a CHLOROPHYLL 
653 0 |a ECOLOGY 
653 0 |a FLUORESCENCE 
653 0 |a GAS PLANTS 
653 0 |a INDUSTRY 
653 0 |a LAND RECLAMATION 
653 0 |a MINING 
653 0 |a OIL SANDS 
653 0 |a PLANTS [BOTANY] 
653 0 |a RECLAMATION 
653 0 |a SAND 
653 0 |a SODIUM 
653 0 |a WETLANDS 
653 0 |a BIOINDICATOR 
653 0 |a CHLOROPHYLL A 
653 0 |a FLUORESCENCE 
653 0 |a GAS EXCHANGE 
653 0 |a LAND RECLAMATION 
653 0 |a LEAF MORPHOLOGY 
653 0 |a MACROPHYTE 
653 0 |a OIL SAND 
653 0 |a PHYTOCHEMISTRY 
653 0 |a PHYTOREMEDIATION 
653 0 |a RESTORATION ECOLOGY 
653 0 |a SODIUM 
653 0 |a WETLAND 
653 0 |a ALBERTA 
653 0 |a CANADA 
653 0 |a CAREX AQUATILIS 
700 1 |9 67146  |a Mollard, Federico Pedro Otto 
700 1 |a Roy, Marie Claude  |9 69847 
700 1 |a Frederick, Kurt  |9 69848 
700 1 |a Foote, A. Lee  |9 72492 
773 |t Ecological Engineering  |g Vol.38, no.1 (2012), p.11-19 
856 |u http://ri.agro.uba.ar/files/intranet/articulo/2012Mollard.pdf  |i En reservorio  |q application/pdf  |f 2012Mollard  |x MIGRADOS2018 
856 |u http://www.elsevier.com/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 09258574 
900 |a 10.1016/j.ecoleng.2011.09.002 
900 |a ^tGrowth of the dominant macrophyte Carex aquatilis is inhibited in oil sands affected wetlands in Northern Alberta, Canada 
900 |a ^aMollard^bF.P.O. 
900 |a ^aRoy^bM.-C. 
900 |a ^aFrederick^bK. 
900 |a ^aFoote^bL. 
900 |a ^aMollard^bF. P. O. 
900 |a ^aRoy^bM.-C. 
900 |a ^aFrederick^bK. 
900 |a ^aFoote^bL. 
900 |a ^aMollard^bF.P.O.^tDepartment of Renewable Resources, University of Alberta, Canada 
900 |a ^aRoy^bM.-C.^tDepartamento de Biología Aplicada y Alimentos, FAUBA, Universidad de Buenos Aires, Argentina 
900 |a ^aFrederick^bK. 
900 |a ^aFoote^bL. 
900 |a ^tEcological Engineering^cEcol. Eng. 
900 |a en 
900 |a 11 
900 |a ^i 
900 |a Vol. 38, no. 1 
900 |a 19 
900 |a BIOLOGICAL INDICATORS 
900 |a CHLOROPHYLL A FLUORESCENCE TRANSIENTS 
900 |a LAND RECLAMATION 
900 |a MINING 
900 |a SALINITY 
900 |a WATER SEDGE 
900 |a ALBERTA , CANADA 
900 |a CARBON ASSIMILATION 
900 |a GAS EXCHANGE RATE 
900 |a GROWING CONDITIONS 
900 |a LEAF LENGTH 
900 |a MACROPHYTES 
900 |a MANAGEMENT TOOL 
900 |a MORPHOLOGICAL FEATURES 
900 |a NATURAL POPULATION 
900 |a NATURAL WETLAND 
900 |a OIL SANDS INDUSTRY 
900 |a PLANTS GROWING 
900 |a STAND LEVELS 
900 |a SURPLUS ENERGY 
900 |a TRANSPIRATION RATES 
900 |a CHLOROPHYLL 
900 |a ECOLOGY 
900 |a FLUORESCENCE 
900 |a GAS PLANTS 
900 |a INDUSTRY 
900 |a LAND RECLAMATION 
900 |a MINING 
900 |a OIL SANDS 
900 |a PLANTS [BOTANY] 
900 |a RECLAMATION 
900 |a SAND 
900 |a SODIUM 
900 |a WETLANDS 
900 |a BIOINDICATOR 
900 |a CHLOROPHYLL A 
900 |a FLUORESCENCE 
900 |a GAS EXCHANGE 
900 |a LAND RECLAMATION 
900 |a LEAF MORPHOLOGY 
900 |a MACROPHYTE 
900 |a OIL SAND 
900 |a PHYTOCHEMISTRY 
900 |a PHYTOREMEDIATION 
900 |a RESTORATION ECOLOGY 
900 |a SODIUM 
900 |a WETLAND 
900 |a ALBERTA 
900 |a CANADA 
900 |a CAREX AQUATILIS 
900 |a Carex aquatilis could be a suitable species for wetland reclamation in mined boreal landscapes as those of the oil sands industry [Northern Alberta]. We compared the performance of C. aquatilis plants established in oil sands industrial wetlands [directly affected by processed materials], on-site indirectly affected wetlands, and off-site natural wetlands. We studied leaf chemistry, fluorescence, gas exchange rates [net photosynthesis and transpiration rates], and morphological features of plants. Despite higher photochemistry efficiency in oil sands populations, plants did not channelize surplus energy into increased carbon assimilation rates. Oil sands populations registered lower culm heights and leaf lengths than natural populations. Plants growing in industrial wetlands were shorter and accumulated more sodium in leaves than plants from indirectly affected wetlands. Evidence indicated that C. aquatilis was a promising species for reclamation as it was tolerant to pollution. Though it survived, C. aquatilis, showed a restricted growth in the oil sands wetlands thereby possibly limiting carbon assimilation at the stand level. Oil sands wetlands amended with freshwater and established over non-industrial materials provided better growing conditions for C. aquatilis and demonstrated management tools for local reclamation efforts. 
900 |a 38 
900 |a 1 
900 |a 2012 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2012Mollard 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/intranet/articulo/2012Mollard.pdf 
900 |a 2012Mollard.pdf 
900 |a http://www.elsevier.com/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-80155135276&partnerID=40&md5=d387ccb099bc9572a732b0ecd7fbf38c 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc