The twin - arginine translocation pathway in a-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence

The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its...

Descripción completa

Detalles Bibliográficos
Autor principal: Nuñez, Pablo A.
Otros Autores: Soria, Marcelo Abel, Farber, Marisa Diana
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2012Nunez.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 11084cab a22024377a 4500
001 AR-BaUFA000114
003 AR-BaUFA
005 20220208135104.0
008 181208t2012 |||||o|||||00||||eng d
999 |c 46548  |d 46548 
022 |a 1932-6203 
024 |a 10.1371/journal.pone.0033605 
040 |a AR-BaUFA  |c AR-BaUFA 
100 1 |a Nuñez, Pablo A.  |9 73338 
245 0 0 |a The twin - arginine translocation pathway in a-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence 
520 |a The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the alpha-proteobacteria class. A comparative genomic analysis in the ?-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two alpha-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these alpha-proteobacteria. 
653 0 |a BACTERIAL PROTEIN 
653 0 |a MESSENGER RNA 
653 0 |a TAT A PROTEIN 
653 0 |a TAT B PROTEIN 
653 0 |a TAT C PROTEIN 
653 0 |a UNCLASSIFIED DRUG 
653 0 |a BACTERIAL RNA 
653 0 |a CARRIER PROTEIN 
653 0 |a ESCHERICHIA COLI PROTEIN 
653 0 |a TWIN ARGININE TRANSLOCASE COMPLEX, E COLI 
653 0 |a ANAPLASMA MARGINALE 
653 0 |a BACTERIAL GENE 
653 0 |a BACTERIAL GENOME 
653 0 |a BACTERIAL SECRETION SYSTEM 
653 0 |a BRUCELLA ABORTUS 
653 0 |a CELL PHENOTYPE 
653 0 |a GENE REARRANGEMENT 
653 0 |a GENETIC ORGANIZATION 
653 0 |a GENETIC TRANSCRIPTION 
653 0 |a GENOME ANALYSIS 
653 0 |a HETEROLOGOUS EXPRESSION 
653 0 |a NONHUMAN 
653 0 |a NUCLEOTIDE SEQUENCE 
653 0 |a OPERON 
653 0 |a PHENOTYPE 
653 0 |a PHYLOGENY 
653 0 |a PROTEIN EXPRESSION 
653 0 |a PROTEIN FUNCTION 
653 0 |a SYNTENY 
653 0 |a TATA GENE 
653 0 |a TATB GENE 
653 0 |a TATC GENE 
653 0 |a TWIN ARGININE TRANSLOCATION PATHWAY 
653 0 |a ALPHAPROTEOBACTERIA 
653 0 |a AMINO ACID SEQUENCE 
653 0 |a ANAPLASMA MARGINALE 
653 0 |a BRUCELLA ABORTUS 
653 0 |a COMPARATIVE STUDY 
653 0 |a ESCHERICHIA COLI 
653 0 |a GENETIC COMPLEMENTATION 
653 0 |a GENETIC VARIABILITY 
653 0 |a GENETICS 
653 0 |a METABOLISM 
653 0 |a MOLECULAR GENETICS 
653 0 |a MULTIGENE FAMILY 
653 0 |a PROTEIN TRANSPORT 
653 0 |a SEQUENCE HOMOLOGY 
653 0 |a SPECIES DIFFERENCE 
653 0 |a ALPHAPROTEOBACTERIA 
653 0 |a ANAPLASMA MARGINALE STR. ST. MARIES 
653 0 |a ANAPLASMATACEAE 
653 0 |a BRUCELLA MELITENSIS BIOVAR ABORTUS 
653 0 |a BRUCELLACEAE 
653 0 |a NEGIBACTERIA 
653 0 |a POSIBACTERIA 
653 0 |a RICKETTSIALES 
653 0 |a ALPHAPROTEOBACTERIA 
653 0 |a AMINO ACID SEQUENCE 
653 0 |a ANAPLASMA MARGINALE 
653 0 |a BRUCELLA ABORTUS 
653 0 |a GENETIC COMPLEMENTATION TEST 
653 0 |a GENETIC VARIATION 
653 0 |a GENOME, BACTERIAL 
653 0 |a MEMBRANE TRANSPORT PROTEINS 
653 0 |a MOLECULAR SEQUENCE DATA 
653 0 |a MULTIGENE FAMILY 
653 0 |a PROTEIN TRANSPORT 
653 0 |a RNA, BACTERIAL 
653 0 |a RNA, MESSENGER 
653 0 |a SEQUENCE HOMOLOGY, AMINO ACID 
653 0 |a SPECIES SPECIFICITY 
700 1 |9 49057  |a Soria, Marcelo Abel 
700 1 |a Farber, Marisa Diana   |9 67580 
773 |t Plos One  |g Vol.7, no.3 (2012), e33605 p.(1-14) 
856 |u http://ri.agro.uba.ar/files/download/articulo/2012Nunez.pdf  |i En internet  |q application/pdf  |f 2012Nunez  |x MIGRADOS2018 
856 |u http://www.plos.org/  |x MIGRADOS2018  |z LINK AL EDITOR 
900 |a as 
900 |a 20131220 
900 |a N 
900 |a OA 
900 |a SCOPUS 
900 |a a 
900 |a s 
900 |a ARTICULO 
900 |a EN LINEA 
900 |a 19326203 
900 |a 10.1371/journal.pone.0033605 
900 |a ^tThe twin-arginine translocation pathway in a-proteobacteria is functionally preserved irrespective of genomic and regulatory divergence 
900 |a ^aNuñez^bP.A. 
900 |a ^aSoria^bM. 
900 |a ^aFarber^bM.D. 
900 |a ^aNuñez^bP. A. 
900 |a ^aSoria^bM. A. 
900 |a ^aFarber^bM. D. 
900 |a ^aNuñez^bP.A.^tInstituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria [CICVyA-INTA], Buenos Aires, Argentina 
900 |a ^aSoria^bM.^tCátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, INBA-CONICET, Buenos Aires, Argentina 
900 |a ^aFarber^bM.D. 
900 |a ^tPLoS ONE^cPLoS ONE 
900 |a en 
900 |a e33605 
900 |a ^i 
900 |a Vol. 7, no. 3 
900 |a BACTERIAL PROTEIN 
900 |a MESSENGER RNA 
900 |a TAT A PROTEIN 
900 |a TAT B PROTEIN 
900 |a TAT C PROTEIN 
900 |a UNCLASSIFIED DRUG 
900 |a BACTERIAL RNA 
900 |a CARRIER PROTEIN 
900 |a ESCHERICHIA COLI PROTEIN 
900 |a TWIN ARGININE TRANSLOCASE COMPLEX, E COLI 
900 |a ANAPLASMA MARGINALE 
900 |a BACTERIAL GENE 
900 |a BACTERIAL GENOME 
900 |a BACTERIAL SECRETION SYSTEM 
900 |a BRUCELLA ABORTUS 
900 |a CELL PHENOTYPE 
900 |a GENE REARRANGEMENT 
900 |a GENETIC ORGANIZATION 
900 |a GENETIC TRANSCRIPTION 
900 |a GENOME ANALYSIS 
900 |a HETEROLOGOUS EXPRESSION 
900 |a NONHUMAN 
900 |a NUCLEOTIDE SEQUENCE 
900 |a OPERON 
900 |a PHENOTYPE 
900 |a PHYLOGENY 
900 |a PROTEIN EXPRESSION 
900 |a PROTEIN FUNCTION 
900 |a SYNTENY 
900 |a TATA GENE 
900 |a TATB GENE 
900 |a TATC GENE 
900 |a TWIN ARGININE TRANSLOCATION PATHWAY 
900 |a ALPHAPROTEOBACTERIA 
900 |a AMINO ACID SEQUENCE 
900 |a ANAPLASMA MARGINALE 
900 |a BRUCELLA ABORTUS 
900 |a COMPARATIVE STUDY 
900 |a ESCHERICHIA COLI 
900 |a GENETIC COMPLEMENTATION 
900 |a GENETIC VARIABILITY 
900 |a GENETICS 
900 |a METABOLISM 
900 |a MOLECULAR GENETICS 
900 |a MULTIGENE FAMILY 
900 |a PROTEIN TRANSPORT 
900 |a SEQUENCE HOMOLOGY 
900 |a SPECIES DIFFERENCE 
900 |a ALPHAPROTEOBACTERIA 
900 |a ANAPLASMA MARGINALE STR. ST. MARIES 
900 |a ANAPLASMATACEAE 
900 |a BRUCELLA MELITENSIS BIOVAR ABORTUS 
900 |a BRUCELLACEAE 
900 |a NEGIBACTERIA 
900 |a POSIBACTERIA 
900 |a RICKETTSIALES 
900 |a ALPHAPROTEOBACTERIA 
900 |a AMINO ACID SEQUENCE 
900 |a ANAPLASMA MARGINALE 
900 |a BRUCELLA ABORTUS 
900 |a GENETIC COMPLEMENTATION TEST 
900 |a GENETIC VARIATION 
900 |a GENOME, BACTERIAL 
900 |a MEMBRANE TRANSPORT PROTEINS 
900 |a MOLECULAR SEQUENCE DATA 
900 |a MULTIGENE FAMILY 
900 |a PROTEIN TRANSPORT 
900 |a RNA, BACTERIAL 
900 |a RNA, MESSENGER 
900 |a SEQUENCE HOMOLOGY, AMINO ACID 
900 |a SPECIES SPECIFICITY 
900 |a The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the alpha-proteobacteria class. A comparative genomic analysis in the ?-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two alpha-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these alpha-proteobacteria. 
900 |a 7 
900 |a 3 
900 |a 2012 
900 |a ^cH 
900 |a AAG 
900 |a AGROVOC 
900 |a 2012Nunez 
900 |a AAG 
900 |a http://ri.agro.uba.ar/files/download/articulo/2012Nunez.pdf 
900 |a 2012Nunez.pdf 
900 |a http://www.plos.org/ 
900 |a http://www.scopus.com/inward/record.url?eid=2-s2.0-84858189184&partnerID=40&md5=4e0d8c81d4650bccd70deb09116f1e35 
900 |a ^a^b^c^d^e^f^g^h^i 
900 |a OS 
942 0 0 |c ARTICULO  |2 udc 
942 0 0 |c ENLINEA  |2 udc