Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems

Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280–315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth’s surface, on-go...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Bornman, Janet F., Barnes, Paul W., Robson, T. Matthew, Robinson, Sharon A., Jansen, Marcel A. K., Ballaré, Carlos Luis, Flint, Stephan D.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2019bornman.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04508nab a22004697a 4500
001 20190604145727.0
003 AR-BaUFA
005 20221025131936.0
008 190604t2019 xxkad|||o|||| 00| | eng d
999 |c 46401  |d 46401 
999 |d 46401 
999 |d 46401 
999 |d 46401 
022 |a 1474-905X 
024 |a 10.1039/c8pp90061b 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Linkages between stratospheric ozone, UV radiation and climate change and their implications for terrestrial ecosystems 
520 |a Exposure of plants and animals to ultraviolet-B radiation (UV-B; 280–315 nm) is modified by stratospheric ozone dynamics and climate change. Even though stabilisation and projected recovery of stratospheric ozone is expected to curtail future increases in UV-B radiation at the Earth’s surface, on-going changes in climate are increasingly exposing plants and animals to novel combinations of UV-B radiation and other climate change factors (e.g., ultraviolet-A and visible radiation, water availability, temperature and elevated carbon dioxide). Climate change is also shifting vegetation cover, geographic ranges of species, and seasonal timing of development, which further modifies exposure to UV-B radiation. Since our last assessment, there has been increased understanding of the underlying mechanisms by which plants perceive UV-B radiation, eliciting changes in growth, development and tolerances of abiotic and biotic factors. However, major questions remain on how UV-B radiation is interacting with other climate change factors to modify the production and quality of crops, as well as important ecosystem processes such as plant and animal competition, pest–pathogen interactions, and the decomposition of dead plant matter (litter). In addition, stratospheric ozone depletion is directly contributing to climate change in the southern hemisphere, such that terrestrial ecosystems in this region are being exposed to altered patterns of precipitation, temperature and fire regimes as well as UV-B radiation. These ozone-driven changes in climate have been implicated in both increases and reductions in the growth, survival and reproduction of plants and animals in Antarctica, South America and New Zealand. In this assessment, we summarise advances in our knowledge of these and other linkages and effects, and identify uncertainties and knowledge gaps that limit our ability to fully evaluate the ecological consequences of these environmental changes on terrestrial ecosystems. 
650 |2 Agrovoc  |9 26 
653 |a CARBON DIOXIDE 
653 |a CLIMATE CHANGE 
653 |a ENVIRONMENTAL POLLUTANTS 
653 |a FRESH WATER 
653 |a GLOBAL WARMING 
653 |a HARMFUL ALGAL BLOOM 
653 |a PHOTOLYSIS 
653 |a SEAWATER 
653 |a STRATOSPHERIC OZONE 
653 |a ULTRAVIOLET RAYS 
700 1 |a Bornman, Janet F.  |u Murdoch University. College of Science Health, Engineering and Education. Perth, W. Australia.  |9 27745 
700 1 |a Barnes, Paul W.  |u Loyola University. Biological Sciences and Environment Program. New Orleans, USA.  |9 68757 
700 1 |a Robson, T. Matthew  |u University of Helsinki. Research Programme in Organismal and Evolutionary Biology. Viikki Plant Science Centre. Finland.  |9 68758 
700 1 |a Robinson, Sharon A.  |u University of Wollongong. Centre for Sustainable Ecosystem Solutions. School of Earth, Atmosphere and Life Sciences and Global Challenges Program. Wollongong, Australia.  |9 68759 
700 1 |a Jansen, Marcel A. K.  |u Plant Ecophysiology Group. School of Biological, Earth and Environmental Sciences. Cork, Ireland.  |9 68761 
700 1 |a Ballaré, Carlos Luis  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 672 
700 1 |a Flint, Stephan D.  |u University of Idaho. Department of Forest, Rangeland and Fire Sciences. Moscow, USA.  |9 68762 
773 |t Photochemical and Photobiological Sciences  |g vol.18, no.3 (2019), p.681–716, tbls., grafs., il., fot. 
856 |f 2019bornman  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2019bornman.pdf  |x ARTI201904 
856 |z LINK AL EDITOR  |u https://www.rsc.org 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG