Multi - scale trade - off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid - Zambezi Valley, Zimbabwe

Cereal residues represent a major resource for livestock feeding during the dry season in southern Africa. When kept on the soil surface instead of feeding them to livestock, crop residues can contribute to increasing soil fertility and maintaining crop productivity in the short - and the long - ter...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Baudron, Frédéric, Delmotte, Sylvestre, Corbeels, Marc, Herrera, Juan Manuel, Tittonell, Pablo
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2015baudron.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04461nab a22003617a 4500
001 20190325162930.0
003 AR-BaUFA
005 20220712095221.0
008 190325t2015 ne d||||o|||| 00| 0 eng d
999 |c 46196  |d 46196 
999 |d 46196 
999 |d 46196 
999 |d 46196 
022 |a 0308-521X 
024 |a 10.1016/j.agsy.2014.03.002 
040 |a AR-BaUFA 
245 1 0 |a Multi - scale trade - off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid - Zambezi Valley, Zimbabwe 
520 |a Cereal residues represent a major resource for livestock feeding during the dry season in southern Africa. When kept on the soil surface instead of feeding them to livestock, crop residues can contribute to increasing soil fertility and maintaining crop productivity in the short - and the long - term. We explored these trade - offs for smallholder cotton – sorghum farming systems in the semi - arid Zambezi Valley, northern Zimbabwe. The analysis was done using simulation models at three scales, the plot, the farm and the territory, to simulate the effects of different sorghum residue allocations to livestock feeding vs. soil mulching, in combination with different application rates of mineral nitrogen fertilizer on crop productivity. The plot - scale simulations suggest that without N fertilization soil mulching has a positive effect on cotton yields only if small quantities of sorghum residues are used as mulch (average cotton yields of 2.24 ± 0.41 kg ha-1 with a mulch of 100 kg ha-1 vs. 1.91 ± 0.29 kg ha-1 without mulch). Greater quantities of mulch have a negative effect on cotton yield without N fertilization due to N immobilization in the soil microbial biomass. With applications of 100 kg N ha-1, quantities of mulch up to 3 t ha-1 have no negative effect on cotton yield. Results at farm - scale highlight the fundamental role of livestock as a source of traction, and the need to feed a greater proportion of sorghum residues to livestock as herd and farm sizes increase. Farmers with no livestock attained maximum crop production when 100 per cent of their sorghum residue remained in the field, as they do not have access to cattle manure. The optimum fraction of crop residue to be retained in the fields for maximum farm crop production varied for farmers with 2 or less heads of cattle (80 per cent retention), with 2–3 heads (60–80 per cent), with 4 or more heads (40–60 per cent). At the scale of the entire territory, total cotton and sorghum production increased with the density of cattle, at the expense of soil mulching with crop residues. The results of our simulations suggest that (i) the optimum level of residue retention depends on the scale at which trade - offs are analyzed; (ii) the retention of all of the crop residue as mulch appears unrealistic and undesirable in farming systems that rely on livestock for traction; and (iii) crop residue mulching could be made more attractive to farmers by paying due attention to balancing C to N ratios in the soil and by promoting small - scale mechanization to replace animal traction. 
653 |a CONSERVATION AGRICULTURE 
653 |a SIMULATION MODEL 
653 |a EQUITY 
653 |a APSIM 
700 1 |a Baudron, Frédéric  |u CIMMYT, Addis Ababa, Ethiopia.  |9 68427 
700 1 |a Delmotte, Sylvestre  |u INRA, UMR Innovation, Montpellier, France.  |u Farming Systems Ecology, Wageningen University, Wageningen, The Netherlands.  |9 68428 
700 1 |a Corbeels, Marc  |u CIRAD UPR SCA, Montpellier, France.  |u Embrapa-Cerrados, Brasília, Brazil.  |9 68429 
700 1 |9 12094  |a Herrera, Juan Manuel  |u CIMMYT-Mexico, El Batan, Mexico  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. 
700 1 |a Tittonell, Pablo  |u Farming Systems Ecology, Wageningen University, Wageningen, The Netherlands.  |u CIRAD UPR SCA, Montpellier, France.  |9 42597 
773 0 |t Agricultural systems  |w SECS000477  |g vol.134 (2015), p.97–106, grafs., tbls. 
856 |f 2015baudron  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2015baudron.pdf  |x ARTI201904 
856 |u https://www.elsevier.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG