Waterlogging of winter crops at early and late stages impacts on leaf physiology, growth and yield

Waterlogging is expected to increase as a consequence of global climate change, constraining crop production in various parts of the world. This study assessed tolerance to 14-days of early- or late-stage waterlogging of the major winter crops wheat, barley, rapeseed and field pea. Aerenchyma format...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Ploschuk, Rocío Antonella, Miralles, Daniel Julio, Colmer, Timothy David, Ploschuk, Edmundo Leonardo, Striker, Gustavo Gabriel
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2018ploschuk.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04957nab a22004217a 4500
001 20190215095534.0
003 AR-BaUFA
005 20220926094630.0
008 190215t2018 ch |||||o|||| 00| | eng d
999 |c 46148  |d 46148 
999 |d 46148 
999 |d 46148 
999 |d 46148 
999 |d 46148 
999 |d 46148 
999 |d 46148 
999 |d 46148 
022 |a 1664-462X 
024 |a 10.3389/fpls.2018.01863 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Waterlogging of winter crops at early and late stages  |b impacts on leaf physiology, growth and yield 
520 |a Waterlogging is expected to increase as a consequence of global climate change, constraining crop production in various parts of the world. This study assessed tolerance to 14-days of early- or late-stage waterlogging of the major winter crops wheat, barley, rapeseed and field pea. Aerenchyma formation in adventitious roots, leaf physiological parameters (net photosynthesis, stomatal and mesophyll conductances, chlorophyll fluorescence), shoot and root growth during and after waterlogging, and seed production were evaluated. Wheat produced adventitious roots with 20– 22% of aerenchyma, photosynthesis was maintained during waterlogging, and seed production was 86 and 71% of controls for early- and late-waterlogging events. In barley and rapeseed, plants were less affected by early- than by late-waterlogging. Barley adventitious roots contained 19% aerenchyma, whereas rapeseed did not form aerenchyma. In barley, photosynthesis was reduced during early-waterlogging mainly by stomatal limitations, and by non-stomatal constraints (lower mesophyll conductance and damage to photosynthetic apparatus as revealed by chlorophyll fluorescence) during late-waterlogging. In rapeseed, photosynthesis was mostly reduced by nonstomatal limitations during early- and late-waterlogging, which also impacted shoot and root growth. Early-waterlogged plants of both barley and rapeseed were able to recover in growth upon drainage, and seed production reached ca. 79–85% of the controls, while late-waterlogged plants only attained 26–32% in seed production. Field pea showed no ability to develop root aerenchyma when waterlogged, and its photosynthesis (and stomatal and mesophyll conductances) was rapidly decreased by the stress. Consequently, waterlogging drastically reduced field pea seed production to 6% of controls both at early- and late-stages with plants being unable to resume growth upon drainage. In conclusion, wheat generates a set of adaptive responses to withstand 14 days of waterlogging, barley and rapeseed can still produce significant yield if transiently waterlogged during early plant stages but are more adversely impacted at the late stage, and field pea is not suitable for areas prone to waterlogging events of 14 days at either growth stage. 
653 |a WATERLOGGING 
653 |a CROPS 
653 |a AERENCHYMA 
653 |a PHOTOSYNTHESIS 
653 |a YIELD 
700 1 |9 37262  |a Ploschuk, Rocío Antonella  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |9 6438  |a Miralles, Daniel Julio  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina. 
700 1 |a Colmer, Timothy David  |u University of Western Australia. Faculty of Science. School of Agriculture and Environment. Crawley, Australia.  |9 68326 
700 1 |9 6393  |a Ploschuk, Edmundo Leonardo  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cultivos Industriales. Buenos Aires, Argentina. 
700 1 |9 11986  |a Striker, Gustavo Gabriel  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u University of Western Australia. Faculty of Science. School of Agriculture and Environment. Crawley, Australia. 
773 |t Frontiers in Plant Science  |g Vol.9 (2018), art.1863, 15 p., tbls., grafs., fot. 
856 |f 2018ploschuk  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2018ploschuk.pdf  |x ARTI201902 
856 |z LINK AL EDITOR  |u https://www.frontiersin.org 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG