Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter

Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Gonzalez Antivilo, Francisco, Paz, Rosalía Cristina, Echeverria, Mariela, Keller, Markus, Tognetti, Jorge Alberto, Borgo, Roberto, Roig Juñent, Fidel A.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2018gonzalezantivilo.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04862nab a22004097a 4500
001 20181022173904.0
003 AR-BaUFA
005 20220909093901.0
008 181022t2018 ne |||||o|||| 00| 0 eng d
999 |c 45969  |d 45969 
999 |d 45969 
999 |d 45969 
999 |d 45969 
022 |a 0168-1923 
024 |a 10.1016/j.agrformet.2018.07.017 
040 |a AR-BaUFA 
245 1 0 |a Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter 
520 |a Vitis vinifera is mainly cultivated in temperate areas, where seasons are well defined and winter conditions might be severe. To survive under these conditions during the dormant season, grapevines sense environmental parameters to trigger different protective mechanisms that lead to cold hardiness (CH). Crop yield and sustainability will be determined according to the level of CH reached in each organ. Moreover, different cultivars of V. vinifera exhibit different behavior throughout the dormant season, attaining a different status of CH. However, there is scarce information concerning how the same cultivar behaves under contrasting thermal environments. The aim of our research was to unveil how CH varies in trunks of the same cultivar under two contrasting environments and define which are the main thermal and biochemical parameters involved in this process. We submitted 2-year old plants of the same clone of cv. Malbec to two different thermal conditions: natural winter (control) and artificially warm winter (treatment). CH status, thermal and biochemical parameters in trunks were measured periodically over the dormant season, and this experiment was repeated for three years. Our results suggest that grapevine trunks subjected to a different environment reach dissimilar CH status, except at the end of winter. In addition, we determined that daily minimum temperature is the main thermal parameter that drives changes in CH. Also, we found that the total soluble sugars have the greatest relative weight in determining the CH compared with the other compounds evaluated. These results have practical implications in the establishment of vineyards for new growing regions. Moreover, with rising minimum temperature predicted by climate change scenarios, grapevines may be more vulnerable to cold events during the dormant season. 
653 |a WINTER SEASON 
653 |a ACCLIMATION 
653 |a DEACCLIMATION 
653 |a TEMPERATURE 
653 |a VITIS VINIFERA 
653 |a CLIMATE CHANGE 
700 1 |a Gonzalez Antivilo, Francisco  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Mendoza – San Juan. Estación Experimental Agropecuaria San Juan (EEA San Juan). San Juan, Argentina.  |u CONICET. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLIA). Laboratorio de Dendrocronología e Historia Ambiental. Mendoza, Argentina.  |9 50963 
700 1 |a Paz, Rosalía Cristina  |u Universidad Nacional de San Juan. Facultad de Ciencias Exactas, Fisicas y Naturales (FCEFyN, UNSJ). Centro de Investigaciones de la Geosfera y Biosfera (CIGEOBIO). San Juan, Argentina.  |u CONICET - Universidad Nacional de San Juan.Centro de Investigaciones de la Geosfera y Biosfera (CIGEOBIO). San Juan, Argentina.  |9 67988 
700 1 |9 67989  |a Echeverria, Mariela  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA). Buenos Aires, Argentina. 
700 1 |a Keller, Markus  |u Washington State University. Department of Horticulture. Irrigated Agriculture Research and Extension Center. Prosser, Washington, USA.  |9 67990 
700 1 |9 13320  |a Tognetti, Jorge Alberto  |u Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias. Laboratorio de Fisiología Vegetal. Buenos Aires, Argentina.  |u Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. Buenos Aires, Argentina. 
700 1 |a Borgo, Roberto  |u Universidad Nacional de Cuyo. Facultad de Ciencias Agrarias. Cátedra de Fisiología Vegetal. Luján de Cuyo, Mendoza, Argentina.  |9 67991 
700 1 |a Roig Juñent, Fidel A.  |u CONICET. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLIA). Laboratorio de Dendrocronología e Historia Ambiental. Mendoza, Argentina.  |9 50198 
773 0 |t Agricultural and forest meteorology  |w SECS000009  |g Vol.262 (2018), p.227-236, grafs., tbls. 
856 |f 2018gonzalezantivilo  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2018gonzalezantivilo.pdf  |x ARTI201810 
856 |u https://www.sciencedirect.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG