Predicting field weed emergence with empirical models and soft computing techniques

Seedling emergence is one of the most important phenological processes that influence the success of weed species. Therefore, predicting weed emergence timing plays a critical role in scheduling weed management measures. Important efforts have been made in the attempt to develop models to predict se...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: González Andújar, José L., Chantre, Guillermo Rubén, Morvillo, Claudia Mariela, Blanco, A. M., Forcella, Frank
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2016gonzalezandujar.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03144nab a22004337a 4500
001 20180730142957.0
003 AR-BaUFA
005 20221103141505.0
008 180730t2016 xxu|||||o|||| 00| 0 eng d
999 |c 45746  |d 45746 
999 |d 45746 
999 |d 45746 
999 |d 45746 
999 |d 45746 
999 |d 45746 
022 |a 0043-1737 (impreso) 
022 |a 1365-3180 (en línea) 
024 |a 10.1111/wre.12223 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a Predicting field weed emergence with empirical models and soft computing techniques 
520 |a Seedling emergence is one of the most important phenological processes that influence the success of weed species. Therefore, predicting weed emergence timing plays a critical role in scheduling weed management measures. Important efforts have been made in the attempt to develop models to predict seedling emergence patterns for weed species under field conditions. Empirical emergence models have been the most common tools used for this purpose. They are based mainly on the use of temperature, soil moisture and light. In this review, we present the more popular empirical models, highlight some statistical and biological limitations that could affect their predictive accuracy and, finally, we present a new generation of modelling approaches to tackle the problems of conventional empirical models, focusing mainly on soft computing techniques. We hope that this review will inspire weed modellers and that it will serve as a basis for discussion and as a frame of reference when we proceed to advance the modelling of field weed emergence. 
650 |2 Agrovoc  |9 26 
653 |a ARTIFICIAL NEURAL NETWORKS 
653 |a GENETIC ALGORITHMS 
653 |a PREDICTIVE MODELLING 
653 |a NONLINEAR REGRESSION 
653 |a WEED CONTROL 
653 |a DAY DEGREES 
700 1 |a González Andújar, José L.  |u Instituto de Agricultura Sostenible (CSIC), Córdoba, Spain.  |9 4026 
700 1 |a Chantre, Guillermo Rubén  |u Universidad Nacional del Sur. Departamento de Agronomía (CERZOS). Bahíıa Blanca, Buenos Aires, Argentina.  |u CONICET – Universidad Nacional del Sur. Bahíıa Blanca, Buenos Aires, Argentina.  |9 47366 
700 1 |a Morvillo, Claudia Mariela  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Buenos Aires, Argentina.  |u Instituto de Agricultura Sostenible (CSIC), Córdoba, Spain.  |9 14518 
700 1 |a Blanco, A. M.  |u Universidad Nacional del Sur. Planta Piloto de Ingeniería Quíımica. Bahía Blanca, Buenos Aires, Argentina.  |u CONICET - Universidad Nacional del Sur. Bahía Blanca, Buenos Aires, Argentina.  |9 67586 
700 1 |a Forcella, Frank  |u USDA-ARS North Central Soil Conservation Research Laboratory, Morris, MN, USA.  |9 58067 
773 0 |t Weed research  |w SECS000181  |g Vol.56, no.6 (2016), p.415-423, grafs. 
856 |f 2016gonzalezandujar  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2016gonzalezandujar.pdf  |x ARTI201808 
856 |u http://www.blackwellpublishing.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG