National scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey

Reliable and timely information on agricultural production is essential for ensuring world food security. Freely availablemedium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-sea...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Song, Xiao Peng, Potapov, Peter V., Krylov, Alexander, King, LeeAnn, Di Bella, Carlos Marcelo, Hudson, Amy, Khan, Ahmad, Adusei, Bernard, Stehman, Stephen V., Hansen, Matthew C.
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2017song.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04727cab a22005177a 4500
001 20180724170350.0
003 AR-BaUFA
005 20220418121009.0
008 180724t2017 ne |||||o|||| 00| 0 eng d
999 |c 45735  |d 45735 
999 |d 45735 
999 |d 45735 
999 |d 45735 
999 |d 45735 
999 |d 45735 
999 |d 45735 
022 |a 0034-4257 
024 |a 10.1016/j.rse.2017.01.008 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 0 |a National scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey 
520 |a Reliable and timely information on agricultural production is essential for ensuring world food security. Freely availablemedium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field based estimate employed historical soybean extent maps fromthe U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybeanmapwas 84%. The field based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time series metrics. The developed method produces reliable and timely information on soybean area in a cost effective way and could be applied to other regions and potentially other crops in an operational mode. 
650 |2 Agrovoc  |9 26 
653 |a AGRICULTURE 
653 |a CROPLAND 
653 |a SAMPLE 
653 |a REMOTE SENSING 
653 |a LANDSAT 
653 |a IMAGE TIME-SERIES 
653 |a CLASSIFICATION 
653 |a DECISION TREE 
700 1 |9 67549  |a Song, Xiao Peng  |u University of Maryland. College Park. Department of Geographical Sciences. United States. 
700 1 |a Potapov, Peter V.  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67550 
700 1 |a Krylov, Alexander  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67551 
700 1 |a King, LeeAnn  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67552 
700 1 |a Di Bella, Carlos Marcelo  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Recursos Naturales. Instituto de Clima y Agua (CNIA). Buenos Aires, Argentina.  |u CONICET . Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información. Buenos Aires, Argentina.  |9 10683 
700 1 |a Hudson, Amy  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67553 
700 1 |a Khan, Ahmad  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67554 
700 1 |a Adusei, Bernard  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 67555 
700 1 |a Stehman, Stephen V.  |u University of New York. College of Environmental Science and Forestry. United States.  |9 67556 
700 1 |a Hansen, Matthew C.  |u University of Maryland. College Park. Department of Geographical Sciences. United States.  |9 43487 
773 0 |t Remote sensing of environment  |w (AR-BaUFA)SECS000160  |g Vol.190 (2017), p.383-395, grafs., tbls., mapas. 
856 |f 2017song  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2017song.pdf  |x ARTI201808 
856 |u  https://www.elsevier.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG