Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation - use efficiencies

Accurately assessing terrestrial gross primary productivity (GPP) is crucial for characterizing the climate-carbon cycle. Remotely sensing the photochemical reflectance index (PRI) across vegetation functional types and spatiotemporal scales has received increasing attention for monitoring photosynt...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Zhang, Chao, Filella, Iolanda, Garbulsky, Martín Fabio, Peñuelas, Josep
Formato: Artículo
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2017zhangchao.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 03782nab a22003857a 4500
001 20180319144430.0
003 AR-BaUFA
005 20220809111837.0
008 180319t2016 sz |||||o|||| 00| 0 e d
999 |c 45350  |d 45350 
999 |d 45350 
999 |d 45350 
999 |d 45350 
999 |d 45350 
022 |a 2072-4292 
024 |a 10.3390/rs8090677 
040 |a AR-BaUFA 
245 1 |a Affecting factors and recent improvements of the photochemical reflectance index (PRI) for remotely sensing foliar, canopy and ecosystemic radiation - use efficiencies 
520 |a Accurately assessing terrestrial gross primary productivity (GPP) is crucial for characterizing the climate-carbon cycle. Remotely sensing the photochemical reflectance index (PRI) across vegetation functional types and spatiotemporal scales has received increasing attention for monitoring photosynthetic performance and simulating GPP over the last two decades. The factors confounding PRI variation, especially on long timescales, however, require the improvement of PRI understanding to generalize its use for estimating carbon uptake. In this review, we summarize the most recent publications that have reported the factors affecting PRI variation across diurnal and seasonal scales at foliar, canopy and ecosystemic levels; synthesize the reported correlations between PRI and ecophysiological variables, particularly with radiation-use efficiency (RUE) and net carbon uptake; and analyze the improvements in PRI implementation. Long - term variation of PRI could be attributed to changes in the size of constitutive pigment pools instead of xanthophyll de-epoxidation, which controls the facultative short - term changes in PRI. Structural changes at canopy and ecosystemic levels can also affect PRI variation. Our review of the scientific literature on PRI suggests that PRI is a good proxy of photosynthetic efficiency at different spatial and temporal scales. Correcting PRI by decreasing the influence of physical or physiological factors on PRI greatly strengthens the relationships between PRI and RUE and GPP. Combining PRI with solar - induced fluorescence (SIF) and optical indices for green biomass offers additional prospects. 
650 |2 Agrovoc  |9 26 
653 |a GROSS PRIMARY PRODUCTIVITY (GPP) 
653 |a RADIATION - USE EFFICIENCY (RUE) 
653 |a PHOTOCHEMICAL REFLECTANCE INDEX (PRI) 
653 |a AFFECTING FACTORS 
653 |a SPATIOTEMPORAL SCALES 
700 1 |a Zhang, Chao  |u CREAF, Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; y CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain c.zhang@creaf.uab.cat; Tel.: +34-935-81-3355  |9 66928 
700 1 |9 66929  |a Filella, Iolanda  |u CREAF, Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain; iola@creaf.uab.cat (I.F.);CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain 
700 1 |9 17762  |a Garbulsky, Martín Fabio  |u Cátedra de Forrajicultura, Facultad de Agronomía, University of Buenos Aires, IFEVA/CONICET, Buenos Aires C1417DSE, Argentina; garbulsky@agro.uba.ar 
700 1 |9 50629  |a Peñuelas, Josep  |u CREAF, Center for Ecological Research and Forestry Applications, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain;josep.penuelas@uab.cat (J.P.) 
773 0 |t Remote sensing  |g Vol.8, no.9 (2016), p. 677, grafs., tbls. 
856 |f 2017zhangchao  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2017zhangchao.pdf  |x ARTI201804 
856 |u http://www.mdpi.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG