Canopy active fluorescence spectrum tracks ANPP changes upon irrigation treatments in soybean crop

Accurate estimation of aerial net primary production (ANPP) using remotely acquired data is one of the main challenges in both environmental monitoring and precision agriculture. Reflectance-based techniques have been widely used for decades, but detection of fluorescence emission by chlorophyll has...

Descripción completa

Detalles Bibliográficos
Otros Autores: Romero, Juan M., Otero, Alvaro, Lagorio, María Gabriela, Berger, Andrés G., Cordon, Gabriela
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021romero.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05465cab a22004097a 4500
001 20231117113138.0
003 AR-BaUFA
005 20240223134202.0
008 231117t2021 ne do|||o|||| 00| 0 eng d
999 |c 55878  |d 55878 
999 |d 55878 
999 |d 55878 
999 |d 55878 
999 |d 55878 
999 |d 55878 
022 |a 0034-4257 
024 |a 10.1016/j.rse.2021.112525 
040 |a AR-BaUFA  |c AR-BaUFA 
245 0 0 |a Canopy active fluorescence spectrum tracks ANPP changes upon irrigation treatments in soybean crop 
520 |a Accurate estimation of aerial net primary production (ANPP) using remotely acquired data is one of the main challenges in both environmental monitoring and precision agriculture. Reflectance-based techniques have been widely used for decades, but detection of fluorescence emission by chlorophyll has emerged as a promising alternative in recent years. Although passive sun-induced fluorescence (SIF) monitoring has shown interesting results, the information it provides is limited to few wavelengths (Fraunhofer and telluric lines). On the other hand, active measurements of steady-state fluorescence and its spectral distribution cover the full-emission spectrum but have not been fully explored due to obvious experimental limitations. In this work we develop a novel active fluorescence measurement procedure, based on lamps and sensors mounted on a field tractor. This technique allowed the detection of the full spectrum of fluorescence emission of a plant crop for the first time in the literature. The main objective of this work was to analyze how the information based on reflectance and fluorescence, recorded by the new proposed methodology, tracks the differences caused by different irrigation treatments in the ANPP of three soybean varieties. We observed that reflectance-based vegetation indices showed limited sensitivity to these cumulative differences, as only EVI2, NDWI and SRWI were able to distinguish between rainfed and irrigation treatments in some few cases. Passive, irradiance-normalised SIF showed this same trend, but active fluorescence peak ratio (FRed/FFar-red) revealed statistically significant differences for the three cultivars studied. In addition, the latter showed a significant correlation with ANPP for two soybean varieties after correction for light re-absorption and scattering (p minor to 0.05, R2 major to 0.5), which was observed for only EVI and foliar water status VIs among passive indicators. Active fluorescence measurements at leaf level by PAM fluorometry did not show differences between treatments in the upper part of the canopy but revealed a biomass-dependent decrease in PSII yield along the vertical axis. Our study demonstrated that fluorescence emission spectrum holds highly valuable information that might allow monitoring ANPP changes upon irrigation from remote sensing applications, and therefore should be carefully studied. Lastly, it highlights the potential of SIF retrieval at both O2-A and O2-B lines. 
650 |2 Agrovoc  |9 26 
653 |a CANOPY ACTIVE FLUORESCENCE 
653 |a PLANT MONITORING 
653 |a FLUORESCENCE MODELING 
653 |a REMOTE SENSING 
653 |a IRRIGATION 
700 1 |a Romero, Juan M.  |u Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorganica, Analítica y Química Física. Buenos Aires, Argentina.  |u Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE). Buenos Aires, Argentina.  |u CONICET - Universidad de Buenos Aires. Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE). Buenos Aires, Argentina.  |9 68787 
700 1 |a Otero, Alvaro  |u Instituto Nacional de Investigación Agropecuaria (INIA). Programa de Cultivos de Secano. Estación Experimental INIA Salto Grande. Salto, Uruguay.  |9 75491 
700 1 |a Lagorio, María Gabriela  |u Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorganica, Analítica y Química Física. Buenos Aires, Argentina.  |u Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE). Buenos Aires, Argentina.  |u CONICET - Universidad de Buenos Aires. Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE). Buenos Aires, Argentina.  |9 67296 
700 1 |a Berger, Andrés G.  |u Instituto Nacional de Investigación Agropecuaria (INIA). Programa de Cultivos de Secano. Estación Experimental INIA La Estanzuela. Colonia, Uruguay.  |9 75492 
700 1 |a Cordon, Gabriela  |u Universidad de Buenos Aires. Facultad de Agronomía. Area de Educación Agropecuaria. Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |9 36999 
773 0 |t Remote sensing of environment  |w (AR-BaUFA)SECS000160  |g Vol.263 (2021), art.112525, 10 p, tbls., grafs., fot. 
856 |f 2021romero  |i En reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021romero.pdf  |x ARTI202311 
856 |u https://www.elsevier.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG