Mite density, not diversity, declines with biomass removal in Patagonian woodlands

Belowground biodiversity loss from anthropogenic causes is far less addressed and quantified than aboveground biodiversity loss. Soil fauna supports soil productivity and biogeochemical cycles, and their decline needs further research. We tested the effects of a woodland harvest gradient (0, 30, 50,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Fernández, Margarita M., Casas, Cecilia, Bedano, José Camilo, Eissenstat, David M., Kaye, Margot W., García, Ivana M., Kun, Marcelo E., Garibaldi, Lucas Alejandro
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/intranet/articulo/2021fernandez.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05513cab a22004337a 4500
001 20221018154046.0
003 AR-BaUFA
005 20230607120623.0
008 221018t2022 ne do|||o|||| 00| 0 eng d
999 |c 55026  |d 55026 
999 |d 55026 
999 |d 55026 
999 |d 55026 
022 |a 0929-1393 
024 |a 10.1016/j.apsoil.2021.104242 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 |a Mite density, not diversity, declines with biomass removal in Patagonian woodlands 
520 |a Belowground biodiversity loss from anthropogenic causes is far less addressed and quantified than aboveground biodiversity loss. Soil fauna supports soil productivity and biogeochemical cycles, and their decline needs further research. We tested the effects of a woodland harvest gradient (0, 30, 50, and 70% biomass removal) on litterfall, mesofauna density, and Oribatida diversity in three sites of northwestern Patagonia (Argentina). Sites contrasted in plant community structure and productivity. Acari from litter and soil were compared. Annual litter production showed a 58% decline at the highest harvest intensity level, which was constant across sites. Litter structural α-diversity decreased with the highest intensity harvest only at the high productivity site. The density of soil-inhabiting Acari did not change with increasing harvest intensity, while the density of Acari inhabiting the litter decreased by 65% at the highest harvest intensity. Within Acari, Oribatida inhabiting the litter had the most sigificant density decline with increasing harvest intensity. Oribatida richness and α- diversity only differed among sites, suggesting resistance to increasing biomass removal despite shifts in litter production and litter structural diversity. Prostigmata did not respond to increasing biomass removal either in soil or litter. Our study is the first to assess Acari response to an aboveground biomass removal gradient in southern woodlands. Applying high biomass removal to low productivity sites can compromise micro detritivore density and thus, impair its functional role. Site productivity should be considered in management plans entailing conservation of soil fauna in southern woodlands. 
650 |2 Agrovoc  |9 26 
653 |a ACARI 
653 |a ORIBATIDA 
653 |a DENSITY 
653 |a A-DIVERSITY 
653 |a BIOMASS REMOVAL 
653 |a WOODLANDS 
700 1 |a Fernández, Margarita M.  |u Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |u CONICET - Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |u The Pennsylvania State University. Dept. of Ecosystem Sciences and Management. Intercollege Graduate Degree Program in Ecology. Pennsylvania State, USA.   |9 74116 
700 1 |a Casas, Cecilia  |u Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u CONICET – Universidad de Buenos Aires. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA). Buenos Aires, Argentina.  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Edafología. Buenos Aires, Argentina.  |9 4644 
700 1 |a Bedano, José Camilo  |u Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQYN).Departamento de Geología / Departamento de Ciencias Naturales. Río Cuarto, Córdoba, Argentina.  |u CONICET - Universidad Nacional de Río Cuarto (UNRC-CONICET). Facultad de Ciencias Exactas, Físico-Químicas y Naturales (FCEFQYN). Instituto de Ciencias de la Tierra, Biodiversidad y Ambiente (ICBIA). Río Cuarto, Córdoba, Argentina.  |9 40416 
700 1 |a Eissenstat, David M.  |u The Pennsylvania State University. Dept. of Ecosystem Sciences and Management.Intercollege Graduate Degree Program in Ecology. Pennsylvania State. USA.  |9 74117 
700 1 |a Kaye, Margot W.  |u The Pennsylvania State University. Dept. of Ecosystem Sciences and Management.Intercollege Graduate Degree Program in Ecology. Pennsylvania State, USA.  |9 74118 
700 1 |a García, Ivana M.  |u Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |u CONICET - Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |9 74119 
700 1 |a Kun, Marcelo E.  |u Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Zoología. Bariloche, Río Negro, Argentina.  |9 74120 
700 1 |a Garibaldi, Lucas Alejandro  |u Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |u CONICET - Universidad Nacional de Río Negro. Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural. Río Negro, Argentina.  |9 31177 
773 |t Applied Soil Ecology  |g Vol.169 (2022), art.104242, 10 p., grafs., tbls., fot. 
856 |f 2021fernandez  |i en reservorio  |q application/pdf  |u http://ri.agro.uba.ar/files/intranet/articulo/2021fernandez.pdf  |x ARTI202210 
856 |u http://www.elsevier.com  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG