Leaf structure and ultrastructure changes induced by heat stress and drought during seed filling in field - grown soybean and their relationship with grain yield

Studies focusing on terminal drought combined with heat impacts on plants of agronomic value remain scarce, and even less under fi eld conditions. The objective of this study was to investigate leaf structural and ultrastructural changes induced by heat stress (HS) and drought stress (DS) during see...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Carrera, Constanza Soledad, Solís, Stella Maris, Ferrucci, María Silvia, Vega, Claudia Rosa Cecilia, Galati, Beatriz Gloria, Ergo, Verónica, Andrade, Fernando Héctor, Lascano, Hernán Ramiro
Formato: Artículo
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2021carrera.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 05101cab a22004577a 4500
001 20220915143821.0
003 AR-BaUFA
005 20230607105618.0
008 220915t2021 bl ad|||o|||| 00| 0 eng d
999 |c 54966  |d 54966 
999 |d 54966 
999 |d 54966 
999 |d 54966 
999 |d 54966 
999 |d 54966 
022 |a 1678-2690 
024 |a 10.1590/0001-3765202120191388 
040 |a AR-BaUFA  |c AR-BaUFA 
245 1 |a Leaf structure and ultrastructure changes induced by heat stress and drought during seed filling in field - grown soybean and their relationship with grain yield 
520 |a Studies focusing on terminal drought combined with heat impacts on plants of agronomic value remain scarce, and even less under fi eld conditions. The objective of this study was to investigate leaf structural and ultrastructural changes induced by heat stress (HS) and drought stress (DS) during seed fi lling and their relationship with physiological variables and yield determination. Two soybean cultivars were grown in field conditions. During seed fi lling four treatments were applied, including a control (without manipulation, at ambient temperature and field capacity), HS (episodes exceeding 32°C for 6 h d-1) during 21-d, DS (20% of fi eld capacity soil water content) during 35-d, and HS×DS. Drought principally reduced leaf area, whereas heat decreased leaf thickness, possible as acclimation strategies, but also irreversible reducing CO2 assimilation sites. Both stresses damaged the outer and inner membranes of chloroplasts, causing swollen chloroplasts and accumulation of plastoglobules, loss of chlorophyll content, and negatively affecting chlorophyll fl uorescence. Thus, the performance and integrity of the photosynthetic machinery were reduced. Through a morpho-functional perspective and a holistic multiscale approach, our results provide evidence of photosynthesis impairment and yield drops under stressful conditions which were associated with structural and ultrastructural (particularly at the level of chloroplasts) modifi cations of leaves. 
650 |2 Agrovoc  |9 26 
653 |a EPISODES OF HIGH TEMPERATURES 
653 |a LATE REPRODUCTIVE DEVELOPMENT 
653 |a LEAF MORPHOANATOMY 
653 |a LEAF PHOTOSYNTHESIS PERFORMANCE 
653 |a SEED NUMBER AND WEIGHT 
653 |a WATER DEFICIT 
700 1 |a Carrera, Constanza Soledad  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV-CIAP). Córdoba, Argentina.Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina  |u CONICET. Buenos Aires, Argentina.  |9 50262 
700 1 |a Solís, Stella Maris  |u Universidad Nacional del Nordeste. Instituto de Botánica del Nordeste (IBONE, UNNE). Corrientes, Argentina.  |u CONICET - Universidad Nacional del Nordeste. Instituto de Botánica del Nordeste (IBONE, UNNE). Corrientes, Argentina.  |u Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Cátedra de Morfología Vegetal. Corrientes, Argentina.  |9 66953 
700 1 |a Ferrucci, María Silvia  |u CONICET. Buenos Aires, Argentina.  |u Universidad Nacional del Nordeste. Instituto de Botánica del Nordeste (IBONE, UNNE). Corrientes, Argentina.  |u CONICET - Universidad Nacional del Nordeste. Instituto de Botánica del Nordeste (IBONE, UNNE). Corrientes, Argentina.  |9 66950 
700 1 |a Vega, Claudia Rosa Cecilia  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Córdoba. Estación Experimental Agropecuaria Manfredi (EEA Manfredi). Córdoba, Argentina.  |9 58112 
700 1 |a Galati, Beatriz Gloria  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente. Cátedra de Botánica General. Buenos Aires, Argentina.  |9 37472 
700 1 |a Ergo, Verónica  |u Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Vegetal. Córdoba, Argentina.  |9 74042 
700 1 |a Andrade, Fernando Héctor  |u CONICET. Buenos Aires, Argentina..  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce (EEA Balcarce). Balcarce, Buenos Aires, Argentina.  |9 5927 
700 1 |a Lascano, Hernán Ramiro  |u Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV-CIAP). Córdoba, Argentina.Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina.  |u CONICET. Buenos Aires, Argentina.  |u Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Fisiología Vegetal. Córdoba, Argentina.  |9 74043 
773 |g Vol.93, no.4 (2021), e20191388, 27 p., il., grafs., tbls.  |t Anais Da Academia Brasileira de Ciencias 
856 |f 2021carrera  |i en internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2021carrera.pdf  |x ARTI202210 
856 |u https://www.scielo.br/j/aabc/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG