The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure

Background: The single-step covariance matrix H combines the pedigree-based relationship matrix A with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix G. In particular, to improve convergence behavior of iterative approach...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Martini, Johannes W. R., Schrauf, Matías Florián, García Baccino, Carolina Andrea, Pimentel, Eduardo C. G., Munilla Leguizamón, Sebastián, Rogberg Muñoz, Andrés, Cantet, Rodolfo Juan Carlos, Reimer, Christian, Gao, Ning, Wimmer, Valentin, Simianer, Henner
Formato: Libro
Lenguaje:Inglés
Materias:
Acceso en línea:http://ri.agro.uba.ar/files/download/articulo/2018martini.pdf
LINK AL EDITOR
Aporte de:Registro referencial: Solicitar el recurso aquí
LEADER 04838nam a22005417a 4500
001 20180809125044.0
003 AR-BaUFA
005 20230914140539.0
008 180809t2018 xxu|||||o|||| 00| 0 eng d
999 |c 45809  |d 45809 
999 |d 45809 
999 |d 45809 
999 |d 45809 
999 |d 45809 
022 |a 0999-193X 
024 |a 10.1186/s12711-018-0386-x 
040 |a AR-BaUFA 
245 1 0 |a The effect of the H−1 scaling factors t and w on the structure of H in the single‑step procedure 
520 |a Background: The single-step covariance matrix H combines the pedigree-based relationship matrix A with the more accurate information on realized relatedness of genotyped individuals represented by the genomic relationship matrix G. In particular, to improve convergence behavior of iterative approaches and to reduce inflation, two weights t and w have been introduced in the definition of H−1, which blend the inverse of a part of A with the inverse of G . Since the definition of this blending is based on the equation describing H−1, its impact on the structure of H is not obvious. In a joint discussion, we considered the question of the shape of H for non-trivial t and w. Results: Here, we present the general matrix H as a function of these parameters and discuss its structure and properties. Moreover, we screen for optimal values of t and w with respect to predictive ability, inflation and iterations up to convergence on a well investigated, publicly available wheat data set. Conclusion: Our results may help the reader to develop a better understanding for the effects of changes of t and w on the covariance model. In particular, we give theoretical arguments that as a general tendency, inflation will be reduced by increasing t or by decreasing w. 
653 |a CONVERGENCE 
653 |a CONVERGENT EVOLUTION 
653 |a COVARIANCE ANALYSIS 
653 |a DATA SET 
653 |a GENOMICS 
653 |a GENOTYPE 
653 |a PARAMETERIZATION 
653 |a PREDICTION 
653 |a REDUCTION 
653 |a RELATEDNESS 
653 |a WHEAT 
653 |a TRITICUM AESTIVUM 
700 1 |9 67704  |a Martini, Johannes W. R.  |u KWS SAAT SE, Einbeck, Germany. 
700 1 |9 37966  |a Schrauf, Matías Florián  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.  
700 1 |9 33814  |a García Baccino, Carolina Andrea  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.  
700 1 |a Pimentel, Eduardo C. G.  |u Institute of Animal Breeding, Bavarian State Research Center for Agriculture. Poing‑Grub, Germany.  |9 67707 
700 1 |9 13019  |a Munilla Leguizamón, Sebastián  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.   |u CONICET. Buenos Aires, Argentina. 
700 1 |9 37756  |a Rogberg Muñoz, Andrés  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.   |u CONICET. Universidad Nacional de La Plata. Buenos Aires, Argentina.  |u Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Instituto de Genética Veterinaria Ing. Fernando Noel Dulout. La Plata, Argentina. 
700 1 |9 12817  |a Cantet, Rodolfo Juan Carlos  |u Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Animal. Buenos Aires, Argentina.   |u Universidad de Buenos Aires. Facultad de Agronomía.. Instituto de Investigaciones en Producción Animal (INPA). Buenos Aires, Argentina.  |u CONICET. Universidad de Buenos Aires.Instituto de Investigaciones en Producción Animal (INPA). Buenos Aires, Argentina. 
700 1 |a Reimer, Christian  |u University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.  |9 67799 
700 1 |a Gao, Ning  |u University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany.  |u South China Agricultural University. College of Animal Science. Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro‑animal Genomics and Molecular Breeding. Guangzhou, China.  |9 67800 
700 1 |a Wimmer, Valentin  |u KWS SAAT SE, Einbeck, Germany.  |9 67801 
700 1 |9 67802  |a Simianer, Henner  |u University of Goettingen. Animal Breeding and Genetics Group, Center for Integrated Breeding Research. Goettingen, Germany. 
773 0 |t Genetics selection evolution  |w (AR-BaUFA)SECS000092  |g Vol.50, no.16 (2018), 9 p., grafs. 
856 |f 2018martini  |i En Internet  |q application/pdf  |u http://ri.agro.uba.ar/files/download/articulo/2018martini.pdf  |x ARTI201808 
856 |u https://www.biomedcentral.com/  |z LINK AL EDITOR 
942 |c ARTICULO 
942 |c ENLINEA 
976 |a AAG